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Notes on Notation

Following standard convention (as used in econdosgtwe will index the rows of a matrix by"'{i =
1..n), and the columns by"(j = 1:k). Thus, the total number of rows and columns arengby 'h" and
"K", respectively. For both row and column vectdesreents will be indexed by™(i = 1..n).

Bold-faced notation will be used for vectors and matrices.

Additional notation will be introduced on a casedase basis.

Module 1. Basic Vector and Matrix Operations
(see Matlab script scripina_mod]}

Vector & Matrix definitions and the Transpose opera
Vectors:nork=1

Special case: Scalan€ k= 1)
Matrices:n, k>1

Column vector

X
X=X,
X3
Row vector
y =[y1 Y, y3]
Transpose operator
X=[x % %]
Y1
Y=Y,
Y3
Matrix examples
n=2k=2:
X {xn xlz}
X1 X2
n=3k=2:
‘m, m,
M=lm, m,
m; My

Transpose operator:
X1 le} M’ = |:rnll My, ”&1}
| X2 X m, My, My

X' =




Matrix addition / subtraction:

A:|:a11 a a13} B:|:bll by, b13j|

& Qyp Ay by, by by
A+B={aﬂ+bﬂ a,t b, agt b13:|
Bty Ayt Dy, Ayt by

A_B:|:a11_b.l.1 a,~ b, as- b13]

30y A= b, Ay by
Note: For this to work the two matrices must himlentical dimensionsi.e. i = ng, ka = kg

Special Matrices:

Square matrix: n =k (ex: matrixX above)

Diagonal matrix: A square matrix with non-zero elements on its died, and zeros everywhere else. A
special case is thidentity matrix | , which has a diagonal of "1's".

In Matlab, simply useye(n) to create an identity matrix of sine(see script)

Symmetric matrix: A square matrix for whichm, =), Ui j, i.e. elements above the diagonal are
mirror images of elements below the diagonal. Eplam

1 2 5 0

2 3 1 44
M =

5 1 18 8

0 44 8 11

For any symmetric matriv' = M

Vector and Matrix multiplication:
The simplest case is the multiplication of a rowtee by a column vector:

b
a=[a a, a b=| b,

b,
axb=[ah+ab+ ab]
This is called thénner product of two vectors.

Rule: For this to work theolumn dimensioof the first vector must be equal to tleev dimensiorof the
second, i.ek, =ny=n.

Note: Whenever you multiply a row vector by a cotumector, the result will bescalar (=1 x 1
matrix). In general, for row vectarand column vectdn (wherek, = n,), we get:

i=1

Knowing this result allows us to perform any multation of conformablevectors and matrices.



Some general rules:

1. Matrices must beonformablefor multiplication, i.e. the&olumn dimensiownf the first matrix
must be equal to th®w dimensiorof the second, i.&, =ng

2. The resulting new matrix will be of dimensionby ks

3. Denoting an individual cell in the resulting matfor row i, columnj asm; use the following
rule to fill these cellsmij = (rowi of first matrix) * (columnj of second matrix)

Examples:

Usinga andb from above:

ba ha ha
bxa=ba ba ba
ba ba ba

Using X andM from above:

My X+ MyX%;  MyXt My X%
MXX = My X+ Mpy Xy Mpy 45+ My, % =
My X+ My X My X5t My %

first row of M x first column oK firstrow dfl  x sead column of
second row oM X first column &f gmad row ofM  x second column Xf
third row of M X first column oK third o ofM X second column ¥f

Note: Any vector or matrix can be pre- or post-pligd by a scalar. Multiplication is then perfaeth
element-by-element. Using agaihfrom above, and scalar

sm, s,
sM = Snal SrEIZ
smy, Ssm,

Also, for any identity matrix and conformable matriM we haveMxl =M and / oixM =M (thus the
name "identity matrix™).

Some important special cases:

n
For column vectoxk with n rows (or elements), we getxx = Z X2
i=1

For any two column vectoesandb of equal length, we can thus derive results ssch a



n

(2-5) (a-5) =3 (a ~1)

(a+b) (a+b)=3 (a +h)’

i=1
Thei-vector:
Consider a column vector of lengttwith all "1™'s. Such a vector is often denoted.aSome useful
results:

ii=n
11 --- 1
1 1 - 1] (nbyn matrix of "1™s)

For scalar s:
s

. S

is=| .
S

Fori, and some column vectgrof equal lengthn:
n

iX=)"x.
i=1

In Matlab, usenes(n, 1) to create am(column) vector of length.

Combining some of these results:
The summed deviations of the elements of columitovedrom its mean can be expressed as:
n

2 (% =%)" =(x=i%) (x-i¥)

i=1

Useful Rules:

For conformable matrices, B, C:
(AxB) =B'x A’
(AxB)xC=Ax(BxC)
Ax(B+C)=AxB+AxC

Bending the Rules: The "Dot" operator in Matlab

Matlab's "dot" operator performs element-by-elenmeattiplication and divisions for matrices that leav
identical dimensions. Strictly speaking, this @ a permissible "textbook procedure”, but it canvbry
useful in programming. Example:



1 2 8
1 2 8
1 2 8
1 2 8
B =
1 1 1
2 2 2
4 4 4
8 8 8
A /B = 1. 0000 2. 0000 8. 0000
0. 5000 1. 0000 4. 0000
0. 2500 0. 5000 2.0000
0. 1250 0. 2500 1. 0000
A *B = 1 2 8
2 4 16
4 8 32
8 16 64
Practice:
Q1: Let
12 31 o 1 - 12
A"[o -1 2} B‘[4 -1 zﬂ C"[s—l
121 |1
i ik

Compute by hand:

A+B
C*A
(C*A)
AC
AC
C*D
D*C
3*B
B
E*C’
E*E
E*E’

AT T SQT0R0 T

Check your work using Matlab (see scripd_modZXor solutions)



X

X
Q2: Using vectoix = :2 , ones-vector (nx 1), and/or identity matrik (n x n), derive the following

Xq
expressions:
$x 1= =x% - =%
= XX 1= =%

n : :
X4 X% e 1-f

X5

Q.3: Consider the 2x1vector = {Xl} .

FindAst.Ax=[x % X X% x| (notethe transpose at the end).
. X
FindB s.t. Bx :{ } :
X

%ﬁ+%&ﬂ.

Combine manipulations of and vectora = {ai}o obtain{
3% + aXX%

Q.4: Using the "dot" operator in combination witkil unit vector andnxnidentity matrixl, compute
(by hand) the following derivations of vecter=[x, %, - x]:

XX’ 0 - 0
0 X -« 0
0 0 X2

4
" =X
ZX,. whereX is the mean of the elementsyof




Module 1.  Working with Partitioned Matrices
(see Matlab scripha_mod?

More notes on notation (or: "a confusing conventioh):

When performing matrix manipulations, including fii@ming, we often want to refer to individual rew

or columns. To follow Greene and some other pomdanometrics textbooks, we will generically index
columns by &" (j = 1..k as before), and rows by their transposes,».gi =1...n, as before). So we
think of each row as a transposed column with dsiwerk x 1 (However, in some cases, we will deviate

from this convention, just to keep you on your togs

Any matrix X can be visualized as being composed by sub-mawicesctors. Fragmenting a matrix
into sub-elements is called "partitioning" a matrionsider the following matrix:

X1 X2 Xz Xy
X = X1 Xy Xpz Xy
X1 Xgp Xzz Xay
Xau KXo Xgz Xy

There are many different ways to partitin Here are some examples:

Ex.1: Partition into columns

X=[c, ¢, c; ¢ where
X1 X5 X3 X4
_| X _| X2 _| X3 _| %a
C1 - Cz - C3 - C4 -
%31 X3o X33 X4
X41 X4z X43 X4
Ex.2: Patrtition into rows
X X1 X51 X31
X X
X=|"?| where x,= X2 X,=| 2 Xy= X2 X, =
X3 X3 X53 X33
X4 X4 X24 X34
Ex. 3
X X
X { 1 12} where
Xa Xy
X1 X | Xs Xy
Xo1 X Xoz Xy
| Xar X | Xaz X
Xy = [ } Xp= [ }
X1 Xa2 Xa3 Xaa



Ex.4:

X X
X { 1 12} where
le X 22

X1 X X3 X14
Xii=|[ X1 Xpp Xog| Xip=| Xy

X33 X3 Xg3 X34

Xn :[X41 X42 X43] X 2= Xgq
There are two basic "rules” for partitioning a matr

1. Adjacent sub-matrices need to share the same diomealong the "glue" line
2. Together, the sub-matrices need to fully contdiordinal elements, and thus yield the original
matrix.

Perhaps the best & most important aspect of pawétl matrices is that they allow us to compactly
express complicated matrix products. Partitionilagcolumns (as in the first example above) or r¢ass
in example 2) is especially important in this retpe

For example, consider matr¥ from above. Assume we want to compute or at Mastlize the general
structure of the matrix produd =X'x X . An element-by-element approach will be tediolnstead,
we partitionX into column vectors as above and proceed fronethErom before:

X=[c, ¢, ¢ ¢

When performing matrix operations using partitiomeatrices, it is best to look at each element ef th
partitioned matrix as a "1 by 1" (i.e. "pseudo-acgl| but to keep the actual dimensions of each sub
matrix in mind.

In this case, we can vied as a 1 by 4 "row vector". Naturally, each of thpseudo-scalars has
dimension (4 by 1) as is clear from inspectionhef originalX.

Transposing a partitioned matrix
1. Take the transpose of the original partitioned métreating each sub-matrix as a pseudo-scalar)
2. Transpose each sub-matrix.

here:
C
CI
r_ 2
X - U
C3
Cy

Now we can use basic matrix multiplication to derilie product. First, let's double-check thatttie
constructs are conformable in their pseudo-dimessi¥' is pseudo- 4 by 1X is pseudo 1 by 4. The



result will be pseudo- 4 by 4. Naturally, confobiligy also has to hold in actual dimensions: is 4 by
4, and so i¥X. The actual dimensions of the product will thisbde a 4 by 4. Thus, we get:

[ 4 4 4 4 ]
inl)h Z X1X2 Z K13 Z X1iX4
i=1 i1 i=1 i-1

6o Ge 66 66| |y ; ;
, X2y D XoXe D KeXs 2, XaX
X,xX:czcldzcz%ézqz§21§22;23;24

c,c G ; ; 4 )
G GG 46 GG Sxad D Xks D XaXs D Xaks
i=1 =1 =1 e

CC GG GG G
4 4 4
me)h Z)M)u(z Z K43
L= i=1

i=1 i

-
Ry
b><

1
iy

The result is a symmetric matrix. This is alwaysetfor any X*X " operation, regardless of the original
dimensions oK.

Practice:

Q1: Considen by k matrix X andn by 1 vectoly. Denote the rows of asx;' ,i=1..n, and the columns
of X asgj, j=1...k. Also, denote the elementsyoésy; i=1...n. Express the following matrix products
first in terms ofx;, then in terms of; (plus anyy;'s if needed).

(i) X'y (i) X'X (i) XX’

Q2: Consider the following vectors:

& b, c X Yy z
= a b=|b, c=|c, X=X, Y=Y, z=|z
3 b, G, X Ys z,

Computeab andab' (show the full results with all individual elemept Then consider the 3 x 3
matricesA = [a b C] andX = [x y z]. Show the full results with all individual elentsrior
A'X . Then expres@\'X in terms of vectora, b, c, X, y andz.
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Module Ill.  Linear Dependence and Column Rank
(see Matlab scripha_mod3}

General definitions & rules

1. When we talk about the "rank" of a matrix, we ubuedfer to itscolumn rank

2. Thecolumn rankof a matrix is the number of itimearly independentolumns.

3. The column rank of a matrix can never exceed thmelau of its rows (important ifi<=k)

Examples:
1 0 2
2 11 4
A = rank@,) = 2 (why?
1713 3 6 A1) (why?)
4 3 8
[1 0 O]
2 11 4
A, = rank@,) = 3
2713 3 5 @)
|14 3 8
1 0 O]
A, = rank@s) = 2 (why?
72 11 4 A3) = 2 (why?)
1 1 11 -3.5
12 2 3
A,=|1 3 4 4 |rank@,) = 3 (linear dependence can be subtle...see sgapmod}
14 0 8
15 6 7|

More general definitions & rules:

1. A matrix X has "full rank" whemank(X) = k. A full-rank matrix is often called "non-singufar

2. A rank-deficient matrix is called "singular".

3. A full-rank matrix has a non-zero determinant (thlowleterminants are only defined for square
matrices). The determinant of a singular matri@.is

4. Full rank is needed for thiaverseof a matrix to exist (though inverses are onlyirted for square
matrices).

5. rank@A*B) = min(rank@), rank®))

6. rank(A) =rank@'A) = rank@A")
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Module IV.  Matrix Inverses and Systems of Linear Equations
(see Matlab scripha_mod#

Inverses are only defined for square, non-singuiatrices.
Consider squaren(x n) matrixA. The inverse of is defined as follows:

B=A" < BxA =| (identity matrix)

Thus:
AxAT=AIxA =

Important rules:

(ABC)'=Cc'BA™

() =(a7)

There are three cases in econometrics where teesieplays an important role:

1. In density functions of multivariate distributions
2. For simplification of complex matrix multiplicatien
3. Solving systems of linear equations

To illustrate (2):

In a product of matrices, any matrix or clustenwtrices that is immediately pre-or post-multipldits
inverse will "cancel out”. ExampleBx(ACD)"ACDxF =BIF =BF

To illustrate (3):

First, let's see how a system of linear equati@amsbe expressed in matrix terms, using the linear
regression model as an example.

In linear regression analysis, we stipulate thiofdhg general relationship for a given individat
firm, household etc) between dependent variablet¢@me")y; and a vector of explanatory variables

X; =[xil X, o )&] (xi1 1s set to "1" for all if the regression model contains an intercept yerm

Y =B%,+ BoXx,+--+ B % (omitting any error terms for now)
We can stack these equations folizll..n individuals:

Yo = BiXant BoXopt e+ B %
Yo = BiXor + BoXopt -+ By Xy

Yo = BiXa + BoXoat o+ B X

Next, we note that the left hand side can be cothpegpressed as a vect;zrz[y1 Y, - yn]'. For
a given individual, the right hand side can beteritas an inner product of vectors:



B+ BoX ot + B % =X xB  where
B

By

X;:[Xil %2 )fk]aﬁz

B

We can now write the entire system as:

X:p X3 X1 X
X X, X X
y= fB =| "2 |B=XB where X 3 7 "%
X,B Xn Xn X2

12

Xy
Xx

Xk

We now need the inverse to solve systems of liagaations (assuming is full rank). Changing
notation fromp tob (the conventional symbol for the regression estnd ), we have:

y=Xb where y = ox1), X = fixk), b = (kx1

(XX)*XYy =(XX )X Xb b

Recall thaiX'X is always square, so the full rank conditiorXak the only assumption needed for this

inverse to exist.
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Module V.  Quadratic Forms, Characteristic Roots, ad Matrix Decomposition
(see Matlab scripha_mod5»

Consider anr(xn) symmetric matriXA and anifx1) vectorx. Then the scalay=x'Ax is called a

"quadratic form". This structure occurs in manyimization problems. It is also used to assess the
"definiteness" of a matrix. Specifically:

1. If g>0 for all nonzerx (i.e for allx that do not contain zeros exclusivelf)js "positive definite".
2. If g<0 for all nonzerw, A is "negative definite".
3. If g=0 for all nonzero, A is "nonnegative definite” or "positive semidefafit

The definiteness of a matrix becomes an issuer@etmain situations in Econometrics:

1. When comparing theelative "magnitude" of two matrices:

Assume we have two symmetric matrices of equal dgioas (e.g. the variance-covariance matrices

of two competing estimatorsh, andB. We would like to determine which matrix is ‘ti@r" (e.qg.
we would like to choose the estimator with "lessay i.e. with the smaller variance-covariance

matrix). We could then compute the quadratic fofrthe difference and examine its magnitude, i.e.

q= x’(A— B)x . If g>0, the difference is positive definite, and we Woconclude thah is "larger”
thanB. The opposite holds if g<0.

2. In Cholesky factorization (CF) of a matrix.

In many econometric analyses we would like to regméa symmetric, positive definite matrix as the

product of a lower and an upper triangular matiasitive-definiteness is a requirement for this to
work. The CF, in turn, is needed to draw from dartaultivariate distributions and to ascertain
positive-definiteness of variance-covariance mafric maximum likelihood estimation (MLE).

Example:
&, @, a3 l, 0 O Ly 1o 1
A=la, a, ay L=, I,, O L'={0 |, |4 where
Q3 8y3 g3 lar 13 133 0 0 I,

the relationship between the elements of A andd.tbde such tha8=LL' holds. This implies:

_2 _ _
3y =l ap=lxn a~l s

ay =15,+15,  @,=1 il b o a o5l 2l 24
The Matlab command for the CFls= chol (A). If A is not positive definite, and error message

occurs. However, note that in Matlabol (A) produces an upper triangular. So to recons#ct
useL™*L (and NOTL*L").

3. In optimization problems, to assure that a maxinifound, the matrix of second derivatives
("Hessian matrix) must be negative-definite. It must be positilafinite for a minimum.
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Assessing Definiteness:

The only reliable way to assess the definitenesggrty of a matrix is by inspection of gggenvaluesr
characteristic roots Considerrf x n) symmetric matriXA. Characteristic roots and their corresponding
characteristic vectors are defined via the follaywquality:

AC =CA

where all matrices amebyn. The columns o€ are called "eigenvectors" or "characteristic vectof
A. Matrix A is a diagonal matrix with theeigenvalues oA on its diagonal. If all eigenvalues >A,is
positive definite. If all of them are <B, is negative definite. If some are >0, some A @5 positive
semi-definite.

In Matlab, the vector of eigenvalues can be obthipgckly usingei g( A) . If both eigenvalues and
eigenvectors are required, Use L] =ei g(A). CCorresponds to matri above, and. corresponds to
matrix A. You can verify that C and L are correct using thle:

A =CAC'
This is called thespectral decompositiofi of A.

Important rules:
1. If Ais pos. def., sois its inverse.

2. If A isnbykwith full column rank, ana>k, thenA'A is pos. def. andA' is nonnegative def.
(important for linear regression models)

3. If two matricesA andB are both pos. def, and every eigenvaluA of eigenvalue oB when sorted
from smallest to largestA(- B) is pos. def (so this is ultimately how we carufigout which matrix
is "larger")

4. The rank of a matrix is the number of its non-zeigenvalues.

Practice:
20

ConsiderA =

N O 0 N
o U1l O W
R NN R

11

Create a separate Matlab script and caliit ‘pr acti ce”.

Your program should accomplish the following:

e create symmetrid™A , call itAl

» get the set of eigenvalues and the matrix of eigetors forAl.
verify that A-80, A-84, and A-85 hold (Greene p68227)

Deduce the rank gkl by inspecting the set of eigenvalues.

Would you expect the determinantAi to be zero? Why or why not? Verify this usitef ()
Are the columns i\1 linearly independent — why or why not?

Verify Al's rank using ank().

coow
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Matrix "Calculus"

Scalar-valued functions:
Consider a general function that relates a vectora scalar y, i.e.

y=f(x) where x=[x % - %]

. . of(x) .
By convention, the set of derlvatlvesu is understood to bekax 1 column vector of the form:

0x
[ of
A
of (x) | o
6( ) =| % |=g(x) where "g" stands forgtadient"
X .
of
Lo |
. . . of (x)
(If for some reason you wish to obtain a row vedatstead, use the notatlelg,—)
X
Example:
f(X)=3+2x + 4%, + 6% %
of (x 2+ 6x of (x
() _ 2 (,):[2+6x2 4+ 6]
0x 4+ 6% 0X
Taking second derivatives yieldswmnmetrik x k matrix:
[ 92t a2t a2t |
92§ (x) o’ f f . 9%
=| % o 2@% |=H (x) where "H" stands for "Hessian".
Oxox' . .
SIS i S i
| %% 0%d% |

For our example:

0% f (x) _{o 6}

oxdx' |6 O

Some convenient results for scalar valued lineactfans ofx (see Greene Appendix A, p. 839):

oa'x _ oax_
0X ox'
OX'AX

=(A+A")x (=2Ax ifA is symmetric

1)
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Systems of equations (or "vector-valued" functions)

Now consider a set of scalar-valued function

Herex is the full set ok parameters contained in the system. Not all egositinay contain ak
elements, but that's OK. We can compactly write &si

y=f(x)

In this case, convention dictates that first daixs are taken with respectxto The resulting matrix of
first derivatives will have dimensiamby k and take the following form:

of, of O]
0% 0% 0%
of, of of
af(x): 0_2 6_2 6_2
ax' X 0% %
X . . . .
| 0% 0%, 0% |

If a certain element of is not represented in a given equation, the cpording derivative will be
automatically set to "0", s.t. the resulting matsalwaysn by k.

Derivatives of equation systems play an importatg in regression models for the estimation of
variance-covariances for functions of original mstiors (using the so called "Delta method").

If the system is linear ik without any cross-terms, a convenient result &lable:

a_yzaA_XzA and aﬂ:A' whereA is (n x k)
ox'  ox o0x



