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Notes on Notation 
 
Following standard convention (as used in econometrics) we will index the rows of a matrix by "i" (i = 
1..n), and the columns by "j"(j = 1:k).  Thus, the total number of rows and columns are given by "n" and 
"k", respectively.  For both row and column vectors elements will be indexed by "i" (i = 1..n).  
 
Bold-faced notation will be used for vectors and matrices. 
 
Additional notation will be introduced on a case-by-case basis. 
 
Module I. Basic Vector and Matrix Operations 
(see Matlab script script  ma_mod1) 
 
Vector & Matrix definitions and the Transpose operator 
Vectors: n or k = 1 
 Special case: Scalar (n = k = 1) 
Matrices: n, k >1 
 
Column vector 

1

2

3

x

x

x

 
 =  
  

x  

Row vector 

[ ]1 2 3y y y=y  

 
Transpose operator 

[ ]1 2 3x x x′ =x   

1

2

3

y

y

y

 
 ′ =  
  

y  

 
Matrix examples 
n = 2, k = 2: 

11 12

21 22

x x

x x

 
=  
 

X  

 
n = 3, k = 2: 

11 12

21 22

31 32

m m

m m

m m

 
 =  
  

M  

 
Transpose operator: 

11 21

12 22

x x

x x

 ′ =  
 

X  11 21 31

12 22 32

m m m

m m m

 ′ =  
 

M  
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Matrix addition / subtraction: 
 

11 12 13 11 12 13

21 22 23 21 22 23

11 11 12 12 13 13

21 21 22 22 23 23

11 11 12 12 13 13

21 21 22 22 23 23

a a a b b b

a a a b b b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

   
= =   
   

+ + + 
+ =  + + + 

− − − 
− =  − − − 

A B

A B

A B

 

 
Note: For this to work the two matrices must have identical dimensions, i.e. nA = nB, kA = kB 

 
Special Matrices: 
Square matrix:  n = k (ex: matrix X above) 
Diagonal matrix:  A square matrix with non-zero elements on its diagonal, and zeros everywhere else. A 
special case is the identity matrix I , which has a diagonal of "1's".   
In Matlab, simply use eye(n) to create an identity matrix of size n. (see script) 
Symmetric matrix: A square matrix for which ,ij jim m i j= ∀ , i.e. elements above the diagonal are 

mirror images of elements below the diagonal.  Example: 
 

1 2 5 0

2 3 1 44

5 1 1.8 8

0 44 8 11

M

 
 
 =
 
 
 

 

 
For any symmetric matrix: M' = M  
 
Vector and Matrix multiplication: 
The simplest case is the multiplication of a row vector by a column vector: 

[ ]

[ ]

1

1 2 3 2

3

1 1 2 2 3 3

b

a a a b

b

a b a b a b

 
 = =  
  

= + +

a b

a×b

 

 
This is called the inner product of two vectors. 
Rule: For this to work the column dimension of the first vector must be equal to the row dimension of the 
second, i.e. ka = nb = n. 
 
Note: Whenever you multiply a row vector by a column vector, the result will be a scalar (= 1 x 1 
matrix).  In general, for row vector a and column vector b (where ka = nb), we get: 
 

1

n

i i
i

a b
=

=∑a×b  

 
Knowing this result allows us to perform any multiplication of conformable vectors and matrices. 
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Some general rules:  
 

1. Matrices must be conformable for multiplication, i.e. the column dimension of the first matrix 
must be equal to the row dimension of the second, i.e. kA = nB 

2. The resulting new matrix will be of dimension nA by kB 
3. Denoting an individual cell in the resulting matrix for row i, column j as mij , use the following 

rule to fill these cells: mij = (row i of first matrix) * (column j of second matrix) 
 

Examples: 
 
Using a and b from above: 
 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

b a b a b a

b a b a b a

b a b a b a

 
 =  
  

b×a  

 
Using X and M  from above: 
 

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

31 11 32 21 31 12 32 22

first row of  x first column of first row of  x second column of 

second row of  x first column of sec

m x m x m x m x

m x m x m x m x

m x m x m x m x

+ + 
 = + + = 
 + + 

M × X

M X M X

M X ond row of  x second column of 

third row of  x first column of third row of  x second column of 

 
 
 
  

M X

M X M X

 

 
Note: Any vector or matrix can be pre- or post-multiplied by a scalar.  Multiplication is then performed 
element-by-element.  Using again M  from above, and scalar s: 
 

11 12

21 22

31 32

sm sm

s sm sm

sm sm

 
 =  
  

M  

 
Also, for any identity matrix I  and conformable matrix M  we have: MxI = M   and / or IxM  = M (thus the 
name "identity matrix"). 
 
 
Some important special cases: 

For column vector x with n rows (or elements), we get 2

1

n

i
i

x
=

′ =∑x × x . 

 
For any two column vectors a and b of equal length, we can thus derive results such as: 
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( ) ( ) ( )

( ) ( ) ( )

2'

1

2'

1

n

i i
i

n

i i
i

a b

a b

=

=

= −

+ + = +

∑

∑

a - b a - b

a b a b

 

The i-vector: 
Consider a column vector of length n with all "1"'s.  Such a vector is often denoted as i.  Some useful 
results: 
 

1 1 1

1 1 1

1 1 1

n′ =

 
 
 ′ =
 
 
 

i i

ii

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (n by n matrix of "1"'s) 

For scalar s: 
s

s
s

s

 
 
 =
 
 
 

i
⋮

 

 
For i, and some column vector x of equal length n:  

1

n

i
i

x
=

′ =∑i x . 

 
In Matlab, use ones(n,1) to create an i-(column) vector of length n. 
 
Combining some of these results: 
The summed deviations of the elements of column vector x from its mean can be expressed as: 

( ) ( ) ( )2

1

n

i
i

x x x x
=

′− = − −∑ x i x i  

 
Useful Rules: 
 
For conformable matrices A, B, C: 

( )
( ) ( )

( )

′ ′ ′=

=

=

A × B B × A

A × B ×C A × B ×C

A × B + C A × B + A ×C

 

 
Bending the Rules: The "Dot" operator in Matlab 
 
Matlab's "dot" operator performs element-by-element multiplication and divisions for matrices that have 
identical dimensions.  Strictly speaking, this is not a permissible "textbook procedure", but it can be very 
useful in programming.  Example:
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A = 
 
     1     2     8 
     1     2     8 
     1     2     8 
     1     2     8 
 
B = 
 
     1     1     1 
     2     2     2 
     4     4     4 
     8     8     8 
 
 
A./B =    1.0000    2.0000    8.0000 
         0.5000    1.0000    4.0000 
          0.2500    0.5000    2.0000 
          0.1250    0.2500    1.0000 
 
A.*B =      1     2     8 
       2     4    16 
       4     8    32 
       8    16    64 
 
 
Practice: 
 
Q1: Let 
 

2 3 1 0 1 1 1 2
0 1 2 4 1 2 3 1

2 1 1
1 1 1

A B C

D E

     
     
          

   
   
      

−= = =
− − −

= =
−

 

 
Compute by hand:  
 

a. A+B 
b. C*A 
c. (C*A)’ 
d. A’C’ 
e. A’C 
f. C*D 
g. D*C 
h. 3*B 
i. B’ 
j. E’*C’ 
k. E’*E 
l. E*E’ 

 
Check your work using Matlab (see script ma_mod1 for solutions) 
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Q2:  Using vector 

1

2

n

x

x

x

 
 
 =
 
 
 

x
⋮

, ones-vector  i (n x 1), and/or identity matrix I (n x n), derive the following 

expressions: 

1

n

i
i

x

n
=
∑

,  

2
1 1 2 1

2
2 1 2 2

2
1 2

1

1

1

n

n

n n n

x x x x x

x x x x x

x x x x x

 − − −
 
− − − 
 
 
 − 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

   

 

Q.3: Consider the 2x1vector 1

2

x

x

 
=  
 

x . 

Find A s.t. [ ]1 1 2 2 2x x x x x ′=Ax  (note the transpose at the end). 

Find B s.t. 
 

=  
 

x
Bx

x
. 

Combine manipulations of x and vector 1

2

a

a

 
=  
 

a to obtain 
2

1 1 2 1 2

2
2 2 1 1 2

a x a x x

a x a x x

 +
 

+  
. 

 
Q.4: Using the "dot" operator in combination with nx1 unit vector i and nxn identity matrix I, compute 
(by hand) the following derivations of vector [ ]1 2 nx x x=x ⋯ : 

nx
n

i
i /

1

3 







∑

=

   

 

nxn
nx

x

x





















2

2
2

2
1

00

00

00

⋯

⋮⋮⋮⋮

⋯

⋯

 

 

1

4

4

4

nx
i

i

i

xx

xx

xx





















−

−
−

∑

∑
∑

⋮
 where x is the mean of the elements of x. 
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Module II.  Working with Partitioned Matrices 
(see Matlab script ma_mod2) 
 
More notes on notation (or: "a confusing convention"): 
When performing matrix manipulations, including partitioning, we often want to refer to individual rows 
or columns.  To follow Greene and some other popular econometrics textbooks, we will generically index 
columns by  "cj"  (j = 1..k, as before), and rows by their transposes, e.g. ′ix  (i =1...n, as before).  So we 
think of each row as a transposed column with dimension k x 1.  (However, in some cases, we will deviate 
from this convention, just to keep you on your toes...) 
 
Any matrix X can be visualized as being composed by sub-matrices or vectors.  Fragmenting a matrix 
into sub-elements is called "partitioning" a matrix.  Consider the following matrix: 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

x x x x

x x x x

x x x x

x x x x

 
 
 =
 
 
 

X  

 
There are many different ways to partition X.  Here are some examples: 
 
Ex.1:  Partition into columns 
 

[ ]
1311 12 14

2321 22 24

3331 32 34

4341 42 44

where

xx x x

xx x x

xx x x

xx x x

=

      
      
      = = = =
      
      

      

1 2 3 4

1 2 3 4

X c c c c

c c c c
 

 
Ex.2: Partition into rows 
 

3111 21 41

3212 22 42

3313 23 43

3414 24 44

where

xx x x

xx x x

xx x x

xx x x

′         
        ′
        = = = = =
        ′
        ′        

1

2
1 2 3 4

3

4

x

x
X x x x x

x

x

 

 
Ex. 3: 
 

13 1411 12

23 2421 22

33 3431 32

43 4441 42

where

x xx x

x xx x

x xx x

x xx x

 
=  
 

  
= =   
   

  
= =   
   

11 12

21 22

11 12

21 22

X X
X

X X

X X

X X
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Ex.4: 
 

[ ]

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

where

x x x x

x x x x

x x x x

x x x x

 
=  
 

   
   = =   
      

= =

11 12

21 22

11 12

21 22

X X
X

X X

X X

X X

 

 
There are two basic "rules" for partitioning a matrix: 
 
1. Adjacent sub-matrices need to share the same dimension along the "glue" line 
2. Together, the sub-matrices need to fully contain all original elements, and thus yield the original 

matrix. 
 
Perhaps the best & most important aspect of partitioned matrices is that they allow us to compactly 
express complicated matrix products.  Partitioning via columns (as in the first example above) or rows (as 
in example 2) is especially important in this respect. 
For example, consider matrix X from above.  Assume we want to compute or at least visualize the general 
structure of the matrix product ′=M X × X .  An element-by-element approach will be tedious.  Instead, 
we partition X into column vectors as above and proceed from there.  From before: 
 

[ ]= 1 2 3 4X c c c c  

 
When performing matrix operations using partitioned matrices, it is best to look at each element of the 
partitioned matrix as a "1 by 1" (i.e. "pseudo-scalar"), but to keep the actual dimensions of each sub-
matrix in mind. 
 
In this case, we can view X as a 1 by 4 "row vector".  Naturally, each of these pseudo-scalars has 
dimension (4 by 1) as is clear from inspection of the original X.   
 
Transposing a partitioned matrix 
1. Take the transpose of the original partitioned matrix (treating each sub-matrix as a pseudo-scalar) 
2. Transpose each sub-matrix. 
 
here: 
 

′ 
 ′
 ′ =
 ′
 ′ 

1

2

3

4

c

c
X

c

c

 

 
Now we can use basic matrix multiplication to derive the product.  First, let's double-check that the two 
constructs are conformable in their pseudo-dimensions.  X'  is pseudo- 4 by 1.  X is pseudo 1 by 4.  The 
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result will be pseudo- 4 by 4.  Naturally, conformability also has to hold in actual dimensions:  X'  is 4 by 
4, and so is X.  The actual dimensions of the product will thus also be a 4 by 4.  Thus, we get: 
 

4 4 4 4

1 1 1 2 1 3 1 4
1 1 1 1

4 4 4 4

2 1 2 2 2 3 2 4
1 1 1 1

4

3 1 3
1

i i i i i i i i
i i i i

i i i i i i i i
i i i i

i i i
i

x x x x x x x x

x x x x x x x x

x x x

= = = =

= = = =

=

′ ′ ′ ′ 
 ′ ′ ′ ′
 ′ = =
 ′ ′ ′ ′
 ′ ′ ′ ′ 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

c c c c c c c c

c c c c c c c c
X × X

c c c c c c c c

c c c c c c c c

4 4 4

2 3 3 3 4
1 1 1

4 4 4 4

4 1 4 2 4 3 4 4
1 1 1 1

i i i i i
i i i

i i i i i i i i
i i i i

x x x x x

x x x x x x x x

= = =

= = = =

 
 
 
 
 
 
 
 
 
 
 
 
 

∑ ∑ ∑

∑ ∑ ∑ ∑

 

 
The result is a symmetric matrix.  This is always true for any "X'*X " operation, regardless of the original 
dimensions of X.   
 
Practice: 
 
Q1: Consider n by k matrix X and n by 1 vector y.  Denote the rows of X as xi' , i=1..n, and the columns 
of X as cj, j=1…k.  Also, denote the elements of y as yi i=1…n.  Express the following matrix products 
first in terms of xi, then in terms of cj (plus any yi's if needed). 
 
(i) X'y   (ii) X'X   (iii) XX' 
 
Q2: Consider the following vectors: 
 

















=
















=
















=
















=
















=
















=

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

z

z

z

y

y

y

x

x

x

c

c

c

b

b

b

a

a

a

zyxcba  

 
Compute ba′  and 'ab  (show the full results with all individual elements).  Then consider the 3 x 3 
matrices [ ]cbaA =   and [ ]zyxX = .  Show the full results with all individual elements for 

XA′ .  Then express XA′  in terms of vectors a, b, c, x, y, and z. 
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Module III. Linear Dependence and Column Rank 
(see Matlab script ma_mod3) 
 
General definitions & rules 
1. When we talk about the "rank" of a matrix, we usually refer to its column rank. 
2. The column rank of a matrix is the number of its linearly independent columns. 
3. The column rank of a matrix can never exceed the number of its rows (important if n<=k) 
 
Examples: 
 

1 0 2

2 11 4

3 3 6

4 3 8

 
 
 =
 
 
 

1A  rank(A1) = 2 (why?) 

 
1 0 0

2 11 4

3 3 5

4 3 8

 
 
 =
 
 
 

2A  rank(A2) = 3 

 
1 0 0

2 11 4

 
=  
 

3A  rank(A3) = 2 (why?) 

 
1 1 11 3.5

1 2 2 3

1 3 4 4

1 4 0 8

1 5 6 7

− 
 
 
 =
 
 
  

4A  rank(A4) = 3 (linear dependence can be subtle...see script ma_mod3) 

 
More general definitions &  rules: 
 
1. A matrix X has "full rank" when rank(X) = k.  A full-rank matrix is often called "non-singular". 
2. A rank-deficient matrix is called "singular". 
3. A full-rank matrix has a non-zero determinant (though determinants are only defined for square 

matrices).  The determinant of a singular matrix is 0. 
4. Full rank is needed for the inverse of a matrix to exist (though inverses are only defined for square 

matrices). 
5. rank(A*B ) = min(rank(A), rank(B)) 
6. rank(A) = rank(A'A ) = rank(AA' ) 
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Module IV.  Matrix Inverses and Systems of Linear Equations 
(see Matlab script ma_mod4) 
 
Inverses are only defined for square, non-singular matrices. 
Consider square (n x n) matrix A.  The inverse of A is defined as follows: 
 

= ↔ =-1B A B× A I  (identity matrix) 
 
Thus: 

= =-1 -1A × A A × A I  
 
Important rules: 

( )
( ) ( )

1

1 1' '

−

− −

=

=

-1 -1 -1ABC C B A

A A
 

 
There are three cases in econometrics where the inverse plays an important role: 
 
1. In density functions of multivariate distributions 
2. For simplification of complex matrix multiplications 
3. Solving systems of linear equations 
 
To illustrate (2): 
In a product of matrices, any matrix or cluster of matrices that is immediately pre-or post-multiplied by its 

inverse will "cancel out".  Example:  ( ) = =-1
B × ACD ACD× F BIF BF  

 
To illustrate (3): 
First, let's see how a system of linear equations can be expressed in matrix terms, using the linear 
regression model as an example. 
 
In linear regression analysis, we stipulate the following general relationship for a given individual (or 
firm, household etc) between dependent variable ("outcome") yi and a vector of explanatory variables 

[ ]1 2 'i i ikx x x=ix ⋯  (xi1  is set to "1" for all i if the regression model contains an intercept term): 

 

1 1 2 2i i i k iky x x xβ β β= + + +⋯  (omitting any error terms for now) 
 
We can stack these equations for all i=1..n individuals: 
 

1 1 11 2 12 1

2 1 21 2 22 2

1 1 2 2

k k

k k

n n n k nk

y x x x

y x x x

y x x x

β β β
β β β

β β β

= + + +
= + + +

= + + +

⋯

⋯

⋮

⋯

 

 

Next, we note that the left hand side can be compactly expressed as a vector [ ]1 2 ny y y ′=y ⋯ .  For 

a given individual, the right hand side can be written as an inner product of vectors: 
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[ ]

1 1 2 2

1

2
1 2

where

,

i i k ik

i i ik

k

x x x

x x x

β β β
β
β

β

′+ + + =

 
 
 ′ = =
 
 
 

i

i

x ×β

x β

⋯

⋯
⋮

 

 
We can now write the entire system as: 
 

11 12 1

21 22 2

1 2

where =

k

k

n n nk

x x x

x x x

x x x

′ ′     
    ′ ′
    = = ⋅ = ⋅
    
    ′ ′     

1 1

2 2

n n

x β x

x β x
y β X β X

x β x

⋯

⋯

⋮ ⋮ ⋱ ⋮⋮ ⋮

⋯

 

 
We now need the inverse to solve systems of linear equations (assuming X is full rank).  Changing 
notation from β  to b (the conventional symbol for the regression estimate of β ), we have: 
 

( ) ( )1 1

where ( 1), ( ), ( 1)nx nxk kx
− −

= = = =

′ ′ ′ ′= =

y Xb y X b

X X X y X X X Xb b
 

 
Recall that X'X  is always square, so the full rank condition of X is the only assumption needed for this 
inverse to exist. 
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Module V. Quadratic Forms, Characteristic Roots, and Matrix Decomposition 
(see Matlab script ma_mod5) 
 
Consider an (nxn) symmetric matrix A and an (nx1) vector x.  Then the scalarq ′= x Ax is called a 
"quadratic form".  This structure occurs in many optimization problems.  It is also used to assess the 
"definiteness" of a matrix.  Specifically: 
 
1. If q>0 for all nonzero x (i.e for all x that do not contain zeros exclusively), A is "positive definite". 
2. If q<0 for all nonzero x, A is "negative definite". 
3. If 0q ≥  for all nonzero x, A is "nonnegative definite" or "positive semidefinite". 
 
The definiteness of a matrix becomes an issue in three main situations in Econometrics: 
 
1. When comparing the relative "magnitude" of two matrices:   

 
Assume we have two symmetric matrices of equal dimensions (e.g. the variance-covariance matrices 
of two competing estimators), A and B.   We would like to determine which matrix is "larger" (e.g. 
we would like to choose the estimator with "less noise", i.e. with the smaller variance-covariance 
matrix).  We could then compute the quadratic form of the difference and examine its magnitude, i.e. 

( )q ′= x A - B x .  If q>0, the difference is positive definite, and we would conclude that A is "larger" 

than B.  The opposite holds if q<0. 
 

2. In Cholesky factorization (CF) of a matrix. 
 
In many econometric analyses we would like to represent a symmetric, positive definite matrix as the 
product of a lower and an upper triangular matrix.  Positive-definiteness is a requirement for this to 
work. The CF, in turn, is needed to draw from certain multivariate distributions and to ascertain 
positive-definiteness of variance-covariance matrices in maximum likelihood estimation (MLE). 
 
Example:  
 

11 12 13 11 11 21 31

12 22 23 21 22 22 32

13 23 33 31 32 33 33

0 0

0 0

0 0

a a a l l l l

a a a l l l l

a a a l l l l

     
     ′= = =     
          

A L L  where 

 
the relationship between the elements of A and L has to be such that A=LL'  holds.  This implies: 
 

2
11 11 12 11 21 13 11 31

2 2 2 2 2
22 21 22 23 21 31 22 32 33 31 32 33

a l a l l a l l

a l l a l l l l a l l l

= = =

= + = + = + +
 

 
The Matlab command for the CF is L = chol(A).  If A is not positive definite, and error message 
occurs.  However, note that in Matlab chol(A) produces an upper triangular. So to reconstruct A, 
use L'*L  (and NOT L*L' ). 
 

3. In optimization problems, to assure that a maximum is found, the matrix of second derivatives 
("Hessian matrix") must be negative-definite.  It must be positive-definite for a minimum.  
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Assessing Definiteness: 
The only reliable way to assess the definiteness property of a matrix is by inspection of its eigenvalues or 
characteristic roots.   Consider (n x n) symmetric matrix A. Characteristic roots and their corresponding 
characteristic vectors are defined via the following equality: 
 

=AC CΛ  
 
where all matrices are n by n.  The columns of C are called "eigenvectors" or "characteristic vectors" of 
A.  Matrix Λ  is a diagonal matrix with the n eigenvalues of A on its diagonal. If all eigenvalues > 0, A is 
positive definite.  If all of them are <0, A is negative definite.  If some are >0, some = 0, A is positive 
semi-definite. 
 
In Matlab, the vector of eigenvalues can be obtained quickly using eig(A).  If both eigenvalues and 
eigenvectors are required, use [C L]=eig(A).  C Corresponds to matrix C above, and L corresponds to 
matrix Λ .  You can verify that C and L are correct using the rule: 
 

=A CΛC'  
 
This is called the "spectral decomposition" of A. 
 
Important rules: 
1. If A is pos. def., so is its inverse. 
2. If A is n by k with full column rank, and n>k, then A'A  is pos. def. and AA'  is nonnegative def. 

(important for linear regression models) 
3. If two matrices A and B are both pos. def, and every eigenvalue of A > eigenvalue of B when sorted 

from smallest to largest, (A - B) is pos. def (so this is ultimately how we can figure out which matrix 
is "larger") 

4. The rank of a matrix is the number of its non-zero eigenvalues. 
 
Practice: 

Consider 

20 4 3 1

4 8 6 2

3 6 5 7

11 2 0 4

 
 
 =
 
 
 

A . 

 
Create a separate Matlab script and call it “m5_practice”.  
 
Your program should accomplish the following: 
• create symmetric A'*A , call it A1  
• get the set of eigenvalues and the matrix of eigenvectors for A1.  
• verify that A-80, A-84, and A-85 hold (Greene p. 826-827) 
 
a. Deduce the rank of A1 by inspecting the set of eigenvalues.  
b. Would you expect the determinant of A1 to be zero? Why or why not? Verify this using det( ) 
c. Are the columns in A1 linearly independent – why or why not? 
d. Verify A1's rank using rank(). 
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Matrix "Calculus" 
 
Scalar-valued functions: 
Consider a general function that relates a vector x to a scalar y, i.e.  

( ) [ ]1 2where ky f x x x ′= =x x ⋯  

 

By convention, the set of derivatives 
( )f∂

∂
x

x
 is understood to be a k x 1 column vector of the form: 

( ) ( )

1

2

k

f
x

f
x

f
x

f
g

∂
∂

∂
∂

∂
∂

 
 
 ∂
 = =

∂  
 
  

x
x

x ⋮

 where "g" stands for "gradient"  

(If for some reason you wish to obtain a row vector instead, use the notation
( )f∂
′∂
x

x
) 

Example: 
( )
( ) ( ) [ ]

1 2 1 2

2
2 1

1

3 2 4 6

2 6
2 6 4 6

4 6

f x x x x

xf f
x x

x

= + + +

+∂ ∂ 
= = + +  ′+∂ ∂ 

x

x x

x x

 

 
Taking second derivatives yields a symmetric k x k matrix: 
 

( ) ( )

2 2 2

2
1 2 1

1

2 2 2

2
2 1 2

2

2 2 2

2
1 2

2

k

k

k k k

f f f
x x x xx

f f f
x x x xx

f f f
x x x x x

f
H

∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 
 
 

∂  = = ′∂ ∂
 
 
 
 

x
x

x x

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 where "H" stands for "Hessian". 

 
For our example: 

( )2 0 6

6 0

f∂  
=  ′∂ ∂  

x

x x
 

 
Some convenient results for scalar valued linear functions of x (see Greene Appendix A, p. 839): 
 

( ) ( 2 if  is symmetric)

′ ′∂ ∂ ′= =
′∂ ∂

′∂ ′= + =
∂

a x a x
a a

x x
x Ax

A A x Ax A
x
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Systems of equations (or "vector-valued" functions): 
 
Now consider a set of scalar-valued function  
 

( )
( )

( )

1 1

2 2

n n

y f

y f

y f

=

=

=

x

x

x

⋮
 

 
Here x is the full set of k parameters contained in the system.  Not all equations may contain all k 
elements, but that's OK. We can compactly write this as 
 

( )=y f x  

  
In this case, convention dictates that first derivatives are taken with respect to x'.  The resulting matrix of 
first derivatives will have dimension n by k and take the following form: 
 

( )

1 1 1

1 2

2 2 2

1 2

1 2

k

k

n n n

k

f f f

x x x

f f f

x x x

f f f

x x x

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 ∂ ∂ ∂

∂  ∂ ∂ ∂=  ′∂
 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

f x

x

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

 
If a certain element of x is not represented in a given equation, the corresponding derivative will be 
automatically set to "0", s.t. the resulting matrix is always n by k.   
 
Derivatives of equation systems play an important role in regression models for the estimation of 
variance-covariances for functions of original estimators (using the so called "Delta method"). 
 
If the system is linear in x without any cross-terms, a convenient result is available: 

and
∂ ∂ ∂= = =

′ ′∂ ∂ ∂
y Ax Ax

A A'
x x x

 where A is (n x k) 

 
 


