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Maximum Likelihood Estimation 
Greene Ch.14; App. E 
R script mod2s1a, mod2s1b 
 
If we feel safe making assumptions on the statistical distribution of the error term, Maximum Likelihood 
Estimation (MLE) is an attractive alternative to Least Squares for linear regression models.  Even better, 
MLE can also be used for non-linear models.  It is thus a more generally applicable estimation strategy 
than Ordinary Least Squares. 
 
As with any econometric estimation, we start with a stipulated population model, including distribution 
assumptions for the error term.  Sticking with the CLRM, we have 
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As evident from the full-sample-model, we continue to assume that individual errors are identically and 

independently distributed (i.i.d) following a normal distribution with mean 0 and variance 2σ .   
 

Let's collect the unknown parameters βand 2σ  into a single vector θ .  Then, the density for a single 
observation (loosely translated as "the probability of observing a given observation") conditional on θ

(and, of course also on xi, which we will tacitly assume throughout) is given by 
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Since the iε 's are independent, so are the yi's.  We can thus write the density for the entire sample ( the 
"sample density" or "sample distribution") as a product of individual densities, i.e. 
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The last equality follows from the fact that exp(a)*exp(b)=exp(a+b), and using the inner product-of vector 
rule for the summation of squared products.  
 
Our focus will lie on the estimation of the parameter vector θ .  For that purpose, we can interpret 

( )|f y θ  as a function of θ , given the data. This change of estimation focus is expressed via a change in 

notation.  Specifically, we will write  (2) as ( ) ( )| ,i il y l=θ θ  and refer to it as the likelihood function for a 
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single observation. Analogously, we will write (3) as ( ) ( )|L L=θ y θ , and call it the likelihood function 

for the entire sample, or simply the sample likelihood.1 
 
By convention and for mathematical convenience (e.g. to avoid very large numbers), we work with the 
likelihood in log form. My notation will be as follows: 
 

( )il θ  is called the "likelihood function" (LF) for a single observation.  ( )L θ is the sample LF.   

( )ln il θ is the log-likelihood function (LLF) for a single observation. ( )ln L θ is the LLF for the sample. 

 
To derive the sample LLF, you can take one of two routes: (i) take the log of the LF for an individual 
observations, then add over individuals (since ln(a*b) = ln(a) + ln(b)), or compute the sample LF first, 
then take the log.  For the normal regression model: 
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Once the LLF is specified, the goal is to find the θ that maximizes this LLF for the sample.  Thus, we 
treat the sample LLF as an objective function, which we are trying to maximize.  Note:  Most individual 
density ordinates comprised in ( )L θ will be much smaller than 1, so( )L θ itself, being a product of these 

ordinates usually takes a value between 0 and 1.  The log of this will thus be negative.  Therefore, 
maximizing ( )ln L θ  means finding a value of θ  that gets the LLF "as close to zero as possible" from 

below.   
 
The first derivative of ( )ln il θ is the individual level score function or "gradient", denoted as ( )ig θ .  The 

sample equivalent is given as ( ) ( )
1

n
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=∑θ θ .  These gradient expressions always have the same 

dimension as θ .  Again, you have two choices for computing ( )g θ : (i) Compute the individual gradient, 

then add up over observations, or compute the sample gradient directly from ( )ln L θ .  The first order 

conditions for optimization require the sample gradient to equal zero at the solution values for θ .  For the 
normal regression model: 
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1 Strictly speaking, the likelihood function is only proportional to the sample distribution. This means it only 
includes elements of the sample distribution that contain the parameters of interest. Any parts of the sample 
distribution that can be multiplicatively separated from those elements are ignored in the likelihood function. 
However, whichever estimate of θ that maximizes the sample distribution will also maximize the likelihood 
function, and vice versa. Thus, this distinction can be neglected for practical purposes. Here I will follow our main 
textbook and use the same mathematical expression for sample distribution and likelihood.  
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The first order conditions are also called "Likelihood Equations".  They lead to the maximum likelihood 
estimators 
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Clearly, the solution for the coefficient vector is identical to the one derived from the OLS problem.  The 

estimate for 2σ  differs slightly from the OLS solution as it does not correct the denominator for degrees 
of freedom (k). 
 
To assure a maximum, we need to examine the properties of the Hessian matrix of second derivatives. We 
could again derive the this expression for a single observation (denoted ( )iH θ ), then add up over all 

observations, or compute the sample Hessian ( )H θ directly from the sample gradient.  For the normal 

regression model: 
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It can be shown that all eigenvalues for this Hessian are negative, thus ( )H θ is negative definite, and we 

have indeed a maximum. 
 

Regularity and Related Properties of ML Estimation 
 

For a function ( )
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∏ θ  to be amenable to ML estimation, it must satisfy the following "regularity 

conditions" (see Greene p. 515, although he expresses these conditions differently) 
 
1. The first three derivatives of ( )ln |if y θ w.r.t.θ  are continuous and finite for almost all yi and for all 

elements of θ , and the derivatives are integrable (so we can derive the expectations of the first and 
second derivatives - see below) 
 

2. The support of yi does not depend on θ .  (So no element in θ  can denote a bound of the distribution 
of yi) 
 

3. The true value of θ lies in a closed and bounded "compact set". (i.e. there can't be discontinuous 
"sets" of candidates for the solution of θ ) 

 
If these regularity conditions are satisfied, two interesting properties of ML estimation arise.  These are 
the score identity and the information matrix identity. 
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Score identity 
 
The score identity states that the expectation of the gradient (w.r.t. yi) at the true values of the parameters 
is zero.  This holds for both an individual gradient and the sample gradient.  In mathematical terms: 
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Let's verify this for the normal regression model: 
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First term: 
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Second term: 
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Information Matrix Identity 
 
The Information Matrix is the negative of the expectation of the Hessian.  At the individual level, we will 
denote it as ( )iI θ .  If we sum this over i , we obtain the sample Information matrix ( )I θ .  Alternatively, 

we can derive ( )I θ  by directly taking the expectation (w.r.t. y) of the sample Hessian: 
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As we will learn shortly, the inverse of ( )I θ  is the most efficient estimator for the variance-covariance 

matrix of θ . 
 
The Information Matrix Identity states that at the true parameter values, the variance of the gradient is 
equal to the information matrix, i.e. 
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This is a bit tedious to show for the normal regression model, but we will illustrate this equality in other 
examples. 
 

Computational Implementation of MLE 
 
For most econometric problems analytical solutions for β̂  and associated statistics are difficult to derive.  
Instead, we let the computer solve the problem using an "iterative algorithm".  The basic concept is as 
follows:   
 
1. Define some (kx1) starting vector 0θ  (e.g. using OLS, or results form a different data set, or form a 

related but simpler model, etc).  Also, choose a "convergence criterion" that determines when the 
algorithm is completed (ex: stop if the change in ( )ln |L θ y  by moving from one candidate θ  to 

another is smaller than "c", where c is some small number, usually between 0.0001 and 0.01. 
 

2. Move from 0θ  to 1θ  (and, more generally, from tθ  to t +1θ ) using the following rule: 

tλ= +t+1 t tθ θ ∆   (12) 

where t∆ is a k x k matrix of k direction vectors (one for each element of θ ), and scalartλ is the "step 
size" that determines how far along the directionals we move until we determine that we have reached 

tθ . 
 

3. Evaluate ( )ln |L tθ y  and ( )ln |L t+1θ y and determine if the difference ( ( )ln |L tθ y - ( )ln |L t+1θ y )< 0 

(in which case the move from tθ  to t +1θ has brought us to a higher point on ln L)  or not. If not, 
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repeat steps 2) and 3) until the difference < 0. Together, Steps 2) and 3) form a single "iteration". 
 

4. Continue until ( ) ( )ln | ln |L L c− <t+1 tθ y θ y  (or some other convergence criterion is satisfied). The 

last candidate θ  is your MLE solution. 
 
Now we need to address the choice of tλ and t∆ .  As described in more detail in Greene's Appendix E, a 
popular direction matrix that works well in many practical applications is  
 

( )( ) ( )1
H g

−
= −t t t∆ θ θ  (13) 

 
This is called "Newton's Method".  The line search parameter tλ is either chosen ex ante (i.e. tλ =0.5), or 
determined at each iteration by satisfying 
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As evident from (13) Newton's approach requires the evaluation of the gradient and Hessian at each 
iteration.  If the analytical forms for g and H can be easily derived, or if good numerical approximations 
are available, this is not a problem.  However, in some cases H may be difficult to compute or even 

approximate.  In such situations the ( )( ) 1
H

−
− tθ term in (13) can be replaced by the "outer product of 

gradients" (OPG), given as 
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This procedure is not quite as accurate as using the actual Hessian, but it works sufficiently well in many 
applications. We will re-visit the OPG shortly when we talk about estimation of the asymptotic variance 

of β̂ . 
 

Estimating the Asymptotic Variance of the ML Estimator 
 
To recap, for the OLS estimator b we were able to derive the exact ("finite sample") variance as 

( ) ( ) 12V σ −′=b X X , which we then approximated by ( ) 12s
−′X X .  However, 2s was shown to be unbiased, 

which is another finite sample property.  In other words, we never had to resort to large-sample (or 
"asymptotic") theory to derive V(b).  
 

This is different for the variance of the ML estimator, ( )ˆV β .  For this construct, no finite sample results 

are available.  All estimators for ( )ˆV β  are asymptotic in nature, i.e. they converge to the true value as the 

sample size goes to infinity.  Thus, they become more reliable with larger sample size. 
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The most commonly used estimator for ( )ˆV β is the inverse of the negative Hessian at the solution value, 

i.e.  

( ) ( )( ) 1
ˆ ˆV̂ H

−
= −β β   (16) 

 
A second estimator that does not require the computation of the Hessian is the inverted OPG at the 
solution value, i.e. 

( ) ( ) 1ˆ ˆV̂
−′=β G G   (17) 

 
This approach is also known as the "BHHH" estimator, named after the founding authors in Berndt. et al. 
(1974).  It is certainly convenient, but can be very inaccurate for smaller samples. For a related discussion 
see Greene p. 522. 
 

Notes for R Implementation 
 
Scripts mod2s1a and 1b estimate the same CLRM based on wage data as script mod1s2b via MLE.  
As we will learn shortly, if the CLRM assumptions are satisfied, OLS and MLE should produce basically 
identical results under large sample sizes.  This is indeed the case for this example. 
 
Script mod2s1a calls R's built-in optimization routine ("optim") , which uses a numerical gradient and 
Hessian to solve the optimization problem. This is convenient in for the (many) instances when the 
analytical gradient and / or Hessian are difficult to compute or program. 
 
You can also run optim with a user-supplied gradient (and let just the Hessian be derived numerically).  
See the optim – manual (type "?optim" in R)  for details. 
 
As a general rule, the more analytical components you can supply, the faster and more accurate your 
algorithm will be.  
 
A fully analytical implementation of MLE is given in script mod2s1b, where we code up our own 
Newton routine based on analytical gradient and Hessian to find the maximum of the log-likelihood 
function.  
 
 
 
 
 
 
 

 


