Maximum Likelihood Estimation

Greene Ch.14; App. E
R scriptnod2sla, nod2slb

If we feel safe making assumptions on the stasikticstribution of the error term, Maximum Likelibd
Estimation (MLE) is an attractive alternative tcalsé Squares for linear regression models. Evearbet
MLE can also be used for non-linear models. thiss a more generally applicable estimation stysateg
than Ordinary Least Squares.

As with any econometric estimation, we start witstipulated population model, including distributio
assumptions for the error term. Sticking with @1eRM, we have
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As evident from the full-sample-model, we contino@ssume that individual errors are identicallgt an
independently distributed (i.i.d) following a norhafistribution with mean 0 and variance .

Let's collect the unknown parametdrand o into a single vecto®. Then, the density for a single

observation (loosely translated as "the probabilftpbserving a given observation™) conditional@®n
(and, of course also of which we will tacitly assume throughout) is givien

§Y |e)=(2m2)_% exp{—%(y‘_TX{BTJ )

Since theg, 's are independent, so are $ii& We can thus write the density for the entnagle ( the
"sample density" or "sample distribution™) as aduat of individual densities, i.e.
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The last equality follows from the fact that expéxp(b)=exp(a+b), and using the inner product-aftoe
rule for the summation of squared products.

Our focus will lie on the estimation of the paraeretector . For that purpose, we can interpret
f (y |6) as a function oB, given the data. This change of estimation fostexpressed via a change in

notation. Specifically, we will write (2) d{0|y;) =, (8), and refer to it as thikelihood function for a



single observationAnalogously, we will write (3) a4.(0|y) =L(0), and call it thdikelihood function
for the entire sampleor simply thesample likelihood

By convention and for mathematical convenience (e.gvoid very large numbers), we work with the
likelihood in log form. My notation will be as falvs:

1, (0) is called the "likelinood function” (LF) for a sjfe observation.L(0) is the sample LF.
Inl; (8) is the log-likelinood function (LLF) for a singlésservation.n L(8)is the LLF for the sample.

To derive the sample LLF, you can take one of taugas: (i) take the log of the LF for an individual
observations, then add over individuals (since*l)(a In(a) + In(b)), or compute the sample LFfijrs
then take the log. For the normal regression model
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Once the LLF is specified, the goal is to find #h#hat maximizes this LLF for the sample. Thus, we
treat the sample LLF as an objective function, Wwhi@ are trying to maximize. Note: Most indivitlua

density ordinates comprised Lr(8) will be much smaller than 1, £48) itself, being a product of these
ordinatesusuallytakes a value between 0 and 1. The log of tHighvis be negative. Therefore,
maximizing In L(G) means finding a value @ that gets the LLF "as close to zero as possiloteh f
below.

The first derivative ofinl, (8) is the individual level score function or "gradigrtenoted agy, (6). The
sample equivalent is given a{0)=>_ g (0). These gradient expressions always have the same
i=1

dimension a®. Again, you have two choices for computig(;ﬂ) : (i) Compute the individual gradient,

then add up over observations, or compute the sagnpbient directly fronin L(G) . The first order

conditions for optimization require the sample geatlto equal zero at the solution values @or For the
normal regression model:
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! Strictly speaking, the likelihood function is omlyoportionalto the sample distribution. This means it only
includes elements of the sample distribution tloatain the parameters of interest. Any parts ofstmaple
distribution that can be multiplicatively separafesim those elements are ignored in the likelihfwotttion.
However, whichever estimate @fthat maximizes the sample distribution will alsoxinzize the likelihood
function, and vice versa. Thus, this distinction b& neglected for practical purposes. Here Ifailbow our main
textbook and use the same mathematical expressigample distribution and likelihood.



The first order conditions are also callédkélihood Equations They lead to the maximum likelihood
estimators

ﬁz(X‘X )‘1xy and 62=5% where e =y -XB (6)
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Clearly, the solution for the coefficient vectoiidentical to the one derived from the OLS problehne

estimate foro? differs slightly from the OLS solution as it daogst correct the denominator for degrees
of freedom K).

To assure a maximum, we need to examine the prepeiftthe Hessian matrix of second derivatives. We
could again derive the this expression for a sioggervation (denoteH; (0)), then add up over all

observations, or compute the sample Hest(ﬁ) directly from the sample gradient. For the normal
regression model:
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It can be shown that all eigenvalues for this Hessire negative, thud (9) is negative definite, and we
have indeed a maximum.

Regularity and Related Properties of ML Estimation

n
For a function| | f (yi |e) to be amenable to ML estimation, it must satik® following 'regularity
1=

conditions$ (see Greene p. 515, although he expresses tbaddions differently)

1. The first three derivatives df f (y; |8) w.r.t.8 are continuous and finite for almost aleyd for all

elements 0#, and the derivatives are integrable (so we caivel#he expectations of the first and
second derivatives - see below)

2. The support of; does not depend dh. (So no element i® can denote a bound of the distribution
of yi)

3. The true value oblies in a closed and bounded "compact set". figretcan't be discontinuous
"sets" of candidates for the solution ®f

If these regularity conditions are satisfied, twteresting properties of ML estimation arise. Ehase
thescore identityand thenformation matrix identity



Score identity

The score identity states that the expectatioh@bradient (w.r.ty;) at thetrue values of the parameters
is zero. This holds for both an individual gradiand the sample gradient. In mathematical terms:

E, (a(0))=0 E/(g(e))=0 8)

Let's verify this for the normal regression model:
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First term:
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E(y-XB)=E(y)-XBp=Xp-Xp=0

Second term:
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Information Matrix ldentity

Thelnformation Matrixis thenegativeof theexpectatiorof the Hessian. At the individual level, we will
denote it ad; (0). If we sum this oveir, we obtain the sample Information matti{®) . Alternatively,

we can derive (9) by directly taking the expectation (w.n). of the sample Hessian:
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As we will learn shortly, the inverse ®{8) is the most efficient estimator for the variancerariance
matrix of 0.

The Information Matrix Identity states that at thee parameter valueshe variance of the gradient is
equal to the information matrix, i.e.

1 (01y)=var[a (0)]= 5, | 9(0)cg (o) | and
1(01y)=Var[a(6)]= &, o(6)e(o) |
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This is a bit tedious to show for the normal regi@s model, but we will illustrate this equality dther
examples.

Computational Implementation of MLE

For most econometric problems analytical solutiﬁmsﬁ and associated statistics are difficult to derive.

Instead, we let the computer solve the problemguaimiterative algorithm”. The basic conceptss a
follows:

1. Define someKx1) starting vecto®, (e.g. using OLS, or results form a different dsgg or form a
related but simpler model, etc). Also, chooseanVvergence criteridithat determines when the
algorithm is completed (ex: stop if the changén'dl(e |y) by moving from one candidate to
another is smaller thar", wherec is some small number, usually between 0.0001 a0t O

2. Move from@, to 6, (and, more generally, fro®, to e,,,) using the following rule:
0.1 =0, +AA, (12)
where A, is a k x k matrix of ldirection vectorgone for each element @f), and scalad, is the "step

size" that determines how far along the directisna move until we determine that we have reached

0,.

3. EvaluatelnL (6, |y) andInL(0,,, |y)and determine if the differencén(L (6, |y)-InL(6,,,|y))<0
(in which case the move fro to ¢,,, has brought us ta higher point on L) or not. If not,



repeat steps 2) and 3) until the difference < @etloer, Steps 2) and 3) form a singteration”.

4. Continue untilln L(Gt+l |y) - InL(Ot |y) <c (or some other convergence criterion is satisfiet}
last candidate® is your MLE solution.

Now we need to address the choicelpdindA, . As described in more detail in Greene's Appeidia
popular direction matrix that works well in manyaptical applications is

A =(-H(0,)) (o) (13)

This is called Newton's Methdd The line search parametdyis either chosen ex ante (i.4.=0.5), or
determined at each iteration by satisfying

oinL (6, +AA,)

=0 14
o (14)

As evident from (13) Newton's approach requiresetraduation of the gradient and Hessian at each
iteration. If the analytical forms farandH can be easily derived, or if good numerical appnations
are available, this is not a problem. Howevesdme caseld may be difficult to compute or even

approximate. In such situations t('teH (9t ))_1term in (13) can be replaced by the "outer prodfict
gradients" (OPG), given as

opa(s,)=( c(o,) ofo,)) where )| % (% ) (15)
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This procedure is not quite as accurate as usm@gdtual Hessian, but it works sufficiently wellnrany
applications. We will re-visit the OPG shortly whemr talk about estimation of the asymptotic vareanc

of B.

Estimating the Asymptotic Variance of the ML Estimator

To recap, for the OLS estimatbmwe were able to derive the exact (“finite samplelfiance as
Vv (b)=0?(X’x)™, which we then approximated ksf (X'X)™. However,s?was shown to be unbiased,

which is another finite sample property. In othrds, we never had to resort to large-sample (or
"asymptotic") theory to derive .

This is different for the variance of the ML esttmav(ﬁ). For this construct, no finite sample results

are available. All estimators fM(B) are asymptotic in nature, i.e. they converge ¢otthe value as the

sample size goes to infinity. Thus, they becomeemeliable with larger sample size.



The most commonly used estimator fb(f})is the inverse of the negative Hessian at the isolwalue,
ie.

V(#)=(-H(B)" (16)

A second estimator that does not require the coatipatof the Hessian is the inverted OPG at the
solution value, i.e.

v(B)=(c'e)” (17)

This approach is also known as the "BHHH" estimatamed after the founding authors in Berndt. et al
(1974). It is certainly convenient, but can bepieaccurate for smaller samples. For a relatedudision
see Greene p. 522.

Notes for R Implementation

Scriptsnmod2sl1a and 1b estimate the same CLRM based on wage data as soddis 2b via MLE.
As we will learn shortly, if the CLRM assumption® aatisfied, OLS and MLE should produce basically
identical results under large sample sizes. Thigdeed the case for this example.

Scriptnmod2s1a callsR's built-in optimization routine ¢pt i i) , which uses a numerical gradient and
Hessian to solve the optimization problem. Thisaavenient in for the (many) instances when the
analytical gradient and / or Hessian are diffitcalcompute or program.

You can also runpt i m with a user-supplied gradient (and let just theditesbe derived numerically).
See thept i m— manual (type "?optim" in R) for details.

As a general rule, the more analytical componenitscan supply, the faster and more accurate your
algorithm will be.

A fully analytical implementation of MLE is givem iscriptnod2s1b, where we code up our own
Newton routine based on analytical gradient andstdego find the maximum of the log-likelihood
function.



