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The Finite Sample Properties of the Least Squares Estimator 
/ Basic Hypothesis Testing 
Greene Ch 4, Kennedy Ch. 2 
R script mod1s3 
 
To assess the quality and appropriateness of econometric estimators, we are always interested in their 
statistical properties.  For most estimators, these can only be derived in a "large sample" context, i.e. by 
imagining the sample size to go to infinity.  The statistical attributes of an estimator are then called 
"asymptotic properties".  However, for the CLRM and the OLS estimator, we can derive statistical 
properties for any sample size, i.e. its "small sample" properties  (Naturally, we can also derive its 
asymptotic properties.  We'll do this later in this course)   
 
Even better, we can derive some statistical properties for bOLS without referring to a specific distribution 
of the error term.  

Unbiasedness 
 
The OLS estimator is unbiased conditional on X, and unconditionally.  The latter implies that it is 
unbiased for every sample.   
 
To show unbiasedness, we can first write the OLS estimator as follows: 
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We then take the expectation of b, conditional and unconditional on X: 
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Note the use of Assumption 3 in the first line:  ( )E ′ =X ε 0 . By doing so, we can derive the statistical 
expectation of b without referring to b's actual distribution – very convenient. Otherwise, we would have 
to solve ( ) ( )| * |E f d= ∫

b

b X b b X b , the generic expression for an expectation, for some explicit multi-

variate density ( )|f b X . 
 
See R  script mod1s3 for an illustration of "unbiasedness".   
 

Variance and Gauss Markov Theorem (GMT) 
 
Treating X as given, we can derive the sampling variance (or, more appropriately, Variance-Covariance 
Matrix) of b as follows: 
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As shown in Greene, p.59/60, this variance is never larger than the variance of any other linear estimator 
of β .  Thus, we say that b is the "best (i.e. minimum variance) linear unbiased estimator", or b is 
"BLUE".  The Gauss-Markov Theorem (Greene p. 60) formalizes this notion.  
 
As is clear from (3) the unconditional variance of b cannot be exactly determined without specifying the 
distribution of X (which we usually don't know).  By the decomposition-of-variance theorem (Greene B-
69): 
 
( ) ( )( ) ( )( )| | |V E V V EX Xb X b X b X= +   (4) 

 
The last expectation term is a constant (β ), so its variance equals zero. This leaves us with  
 

( ) ( )( ) ( )( )12|V E V σ E -¢= =X Xb b X X X   (5) 

 
Naturally, this will depend on the distribution of X in the population. However, the GMT extends to the 
unconditional case, i.e. holds for ANY X. 
 

Estimating the variance of the OLS Estimator 
 
Note that the formula for the sampling variance of b includes the variance of the error terms, 2σ , which is 
usually unknown.  We thus have to estimate it.  A natural candidate might be the "sample variance" of the 
residuals, i.e. e'e/n (we continue to assume that the regression has an intercept s.t. the sum and thus the 
mean of residuals is zero).  Let's check if this estimator is unbiased: 
 

( ) since= = + = =

′ ′⇒ =

e My M Xβ ε Mε MX 0
e e ε Mε

 (6) 

 
We now seek the expectation of the last term (conditional on X, which I will tacitly assume throughout). 
Note that ′ε Mε is a scalar, thus its value is equal to its trace (= sum of diagonal elements of a matrix).  
We can thus use the popular "trace trick" to derive the expectation: 
 
( ) ( )( ) ( )( ) ( )( ) ( )2E E tr E tr tr E trσ′ ′ ′ ′= = = =ε Mε ε Mε Mεε M εε M  (7) 

 
The trace of M is (n-k) (see Greene p. 51), so we get  
 

( ) 2/ n kE n
n

σ− ′ =  
 

e e   (8) 

 
So this estimator is slightly biased towards zero, although the bias is small for large samples (and small 
k).  However, we can do better by using  
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( )2 /s n k′= −e e   (9) 

  
as estimator for 2σ . You can easily verify that this estimator is unbiased. The square root of this 
estimator, "s", is often called the "standard error of the regression".  We can now derive the estimated 
variance of b as   
 
( ) ( ) 12V̂ s −′=b X X    (10) 

 
This is a k by k symmetric matrix.  The diagonal of this matrix gives the estimated variance for each 
element of b.  The square root of this element-specific estimated variance is known as the standard error 
for a given coefficient.  You've seen them in regression print-outs. Now you know where they're coming 
from. 
 

The normality assumption and hypothesis testing 
 
So far, we were able to show that b is unbiased and has variance ( ) 12σ −′X X  (estimated via ( ) 12s −′X X ).  
However, we can't say anything about the full distribution of b without invoking Assumption 5: 

( )2~ ,n σε 0 I .  By properties of the normal distribution, it follows that  
 

( )( )12~ ,n σ −′b β X X   (11) 

 
Details:  We know that ( )2~ 0,nε σ  and that we can express b as ( ) 1−′ ′= +b β X X X ε  (see (1)).  Thus, b 

can be considered a linear function of ε .  By the properties of the normal (or multivariate normal) 
density, a random variable (or vector) that is a linear function of a normally distributed variable (vector) 
will also be normally distributed.  Note that we didn't need this assumption to derive the moments (i.e. 
mean, variance) of b.  An alternative way to derive the variance for b would be: 
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We can now use this additional piece of information (or better: "assumption") to derive hypothesis tests 
for the elements of b.  Let bk be the kth element of b and Skk be the kth diagonal element of  ( ) 1−′X X .  Then 
we have: 

( ) ( ) ( ) ( ) ( )2 2
2

~ , ~ 0, ~ 0,1k kkk kk
k k k k kkk
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b
b σ b σ
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−
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If we knew 2σ we could use the standard normal ("z") distribution to draw statistical inferences about kb . 
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Quick Recap of a hypothesis test 
 
For example, if we wanted to test the null hypothesis H0: k ab ≤  against the alternative hypothesis Ha: 

k ab >  where a is some specific value, we could proceed as follows:  First, we argue that if we reject that 

k ab =  in favor of k ab > , we would certainly also reject k ab ≤ .  Then we argue: If k ab = , this implies 
that that ( )kE b a= .  Thus, the further away bk is from a, the less likely we have k ab = .  More 
specifically, the further to the right bk is from a, the less likely we have k ab ≤ .  This can be re-stated as 

"the further zk = 
2

k
kk

b a

Sσ

−  from 0, the less likely we have k ab = ", and " the further to the right zk is from 

0, the less likely we have k ab ≤ ".  The analogous reasoning holds for the left tail of the distribution if 
the inequality sign is reversed in the null. 
 
So what is "too far to the right" to reject the null? That's where conventional threshold values come in.  
These are different for different distributions, and also change with the underlying level of confidence 
we'll have in our test result.  For hypothesis tests, though, we prefer to work with (1-level of confidence), 
which we call the level of significance (usually denoted as α ).  Common levels of significance are 0.1, 
0.05, and 0.01.  The smaller the level of significance,  the higher the level of confidence.  Each level of 
significance comes with a "critical value" in the underlying distribution.   
 
For a test of H0: k ab =  (called a "two-tailed test"), we need to consider both tails, and two (symmetric) 
critical values.  This splits the level of significance in half for each tail, and pushes the critical values 
further from the mean. 
 
For the z-distribution: 
α  critical value, one tailed  

(absolute values) 
critical value, two-tailed 
(absolute values) 

0.1 1.28 1.645 
0.05 1.645 1.96 
0.01 2.33 2.575 
 
Examples:  
 
H0 bk  2 kkSσ  zk α  zcrit decision 

2kb ≥  0.8 1.2 -1 0.05 1.645 do not 
reject 

2kb ≤  4.4 1.2 2 0.05 1.645 reject 

2kb =  4.4 1.2 2 0.05 1.96 reject 
There are two ways to draw test conclusions: compare the computed test value (here zk) to the critical 
value (can be looked up in tables, usually known for common distributions), OR compare the p-value to 
α .  The p-value is the area under the tail of the distribution further out from the critical value.   
 
Thus:  Reject if  |zk | > zcrit .  Equivalently, reject if p < α .  STATA reports p-values for all coefficients 
with its regression output.  In Matlab, you can compute p-values for a given derived statistic via built-in 
cumulative distribution functions, such as tcdf(.), chi2cdf(.), etc.  In R , use pnorm(), 
tnorm(),pchisq(), etc. 
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The t-test 
That said, we still have the problem of not knowing σ .  This means that we can't work with z-values, z-
distributions, and z-tables to perform hypothesis tests involving β .  However, we can work with 
 

2
k k

k kk

bt
s S

b−
=   (14) 

 
which follows a standard t-distribution with (n-k) degrees of freedom (the t-distribution has 3 parameters: 
mean, variance, and D.o.F.  The standard t-distribution has mean 0 and variance 1).  We can thus proceed 
with hypothesis testing as above, replacing 2σ  with s2, and z with t.  The critical values for the 
conventional levels of α can be looked up in a t-table.  As shown in detail in Greene section 5.4.1., the 
assumption of normality of ε is critical in deriving this t-value.   
 
Using the t-distribution, we can also compute a ( )100 1 %α−  confidence interval for a given kb  as: 
 

{ }
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(1 ) / 2 / 2
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 (15) 

 
At this point, we have discussed all elements of a standard regression output.  We will return to the topic 
of hypothesis testing later in this course. 

  
 


	The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing
	Unbiasedness
	Variance and Gauss Markov Theorem (GMT)
	Estimating the variance of the OLS Estimator
	The normality assumption and hypothesis testing
	Quick Recap of a hypothesis test
	The t-test


