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The Classical Linear Regression Model and Least Squares 
Greene Chapters: 2, 3 
R script mod1_2a, mod1_2b, mod1_2c, mod1_2d 

 Regression Analysis 
Much work in applied econometrics is based on regression analysis.   
 

Definition 
A regression is a stipulated relationship between the expectation of a dependent variable and a 
combination of explanatory data and unknown parameters.   
Generically:  
( ) ( )| , ,iE y f=i ix β x β   (1) 

We can perform regression analysis in fully parametric and semi-parametric frameworks. We usually 
write the regression model as: 
 

( ) ( )( ) ( ) ( )| , | , | , ,i i i i i i iy E y y E y E y fε ε= + − = + = +i i i ix β x β x β x β  (2) 
 
where iε  is an "error term" that includes everything we can't explain about yi even knowing xi and 
(hypothetically) population parameter vector β . 

What's in the error term? 
The error term is also called the "disturbance term". It can include some or all of the following 
components: 
 
1. Specification error:  There are other factors than xi that drive the observed variability in yi , and / or 

the functional relationship between yi  and xi is incorrect. The former is essentially unavoidable in 
most applications, and does not necessarily jeopardize our ability to estimate the effect of xi on yi.  
The latter is a bigger problem.  It can produce inefficient and, in some cases, misleading estimates. 
 

2. Measurement error (also known as "errors in variables"):  Usually a minor problem if we mis-
measure yi, but potentially a serious issue if we mis-measure elements of xi.   
 

3. Human erratic behavior:  The stipulated relationship between yi and xi is generally correct, but units 
of observation (usually people) slightly change their behavior from case to case, introducing 
deviations from the stipulated relationship. This is a truly random part of the error term, and in most 
cases does not jeopardize estimation results. 

 
In a parametric framework, we would assign a density to iε  (such as ( )20,n σ ), where n stands for 

"normally distributed".  In that case, 2σ  becomes an additional parameter that has to be estimated.  In a 
semi-parametric framework we would simply state that ( ) 0iE ε =  to preserve the relationship in (1). 
 
A special case of a regression model is a model that is linear in β , i.e. one that can be written as 

i iy ε′= +ix β   (3) 
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Such models can be estimated via a technique called "Least Squares (LS)".  If certain assumption on iε  
hold, the model is called "Classical Linear Regression Model" (CLRM), and estimation can proceed via 
"Ordinary Least Squares" (OLS), the topic of the next section. 
 
 
R practice: Building a regression model for study time 

R script mod1_2a illustrates how to build a regression relationship with simulated data. The script also 
shows the gain in accuracy as the regression model chosen by the researcher approaches the true model. 

Notation 
Assume you have a sample of wages and explanatory variables for n individuals. 
For a single observation (= person, firm, household, etc), the CLRM can be written as: 
 

1 1 2 2i i i k ik i iy x x xβ β β ε ε′= + + + + = +ix β   (4) 
 
The β - terms  are unknown population parameters.  In a regression context, they are often referred to as 
"coefficients".  In practice, xi1 is often simply the number "1", which then makes 1β  the intercept or 
"constant term" of the regression model.  The remaining β - terms are "slope coefficients". By 
convention, I will index the β - terms from 1 through k.  (In some texts, the index is from 0 to k, which 
implies that the total number of coefficients is k+1).   
 
We can stack these equations for all i=1..n individuals: 
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  (5) 

 
 Next, we note that the left hand side and the error terms can be compactly expressed as a vectors 

[ ] [ ]1 2 1 2andn ny y y ε ε ε′ ′= =y ε  .  For a given individual, the right hand side (minus 
the error term) can be written as an inner product of vectors: 
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  (6) 

 
We can now write the entire system of linear equations as: 
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Assumptions 
The CLRM rests on 4 key assumptions. An optional 5th assumption (normality of the error term) can be 
added in cases where a fully parametric approach is desired or needed. 

Assumption 1: 
The stipulated relationship is linear in parameters (i.e. in β ).  Note: This does not mean that the elements 
of data matrix X also have to be linear.  It's OK to have log-terms, squared terms, etc in the X matrix.  
Certain nonlinear forms of y are also permissible, as long as they can be transformed to linearity. For 
example, the following common model is a permissible CLRM: 
 

( ) ( )exp lni i i iy yε ε′ ′= + ↔ = +i ix β x β   (8) 
 
The log-transformation on both sides preserves linearity.  If all of the xi's are logged as well, the model is 
called "log-log" or "log-linear".  If all of the xi's are linear, the model is called "semi-log".  Naturally, a 
mix of logged and linear regressors is also possible.  As we will see below, logging either side changes 
the interpretation of marginal effects. 

Assumption 2: 
The data matrix X has to be "full rank".  X has dimensions n x k, n>k, so "full rank" implies that X is rank 
"k". In words: All variables in X are linearly independent.  If this wasn't the case, there would be an 
infinite number of solutions for the estimate of β . 
 
Example: see R script mod1_2b 

Assumption 3: 
The expectation of all error terms, conditional on X, is zero, i.e 

( )

( )
( )

( )

1

2

|
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|n

E
E
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ε

ε

 
 
 = = 
 
  

X
X

ε X 0

X


  (9) 

 
In words, this implies that no element of the data matrix contains any information about the expectation of 
any error term, so ε  is a true vector of "unknown" or "unobservable" effects. If this assumption is 
violated, our estimated parameters will "pick up" undesired effects from "the stuff in the error term", thus 
producing misleading results.  This is the infamous "omitted variable (OV)" problem, which comes in 
many sizes & shapes. We will talk about OV's at length later in this course. 
 
As discussed in Greene, ch. 2, Assumption 3 also implies the following relationships: 
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  (10) 

 
Assumption 3 is often mis-interpreted and can be confusing. Here is a closer look.   
 
First, we need to distinguish between the distribution of the error term and the distribution of the 
explanatory variables.  In the CLRM, we assume that each observation (say a given individual i) is 
assigned her own error term, iε .  In addition, error terms are independent from each other.   Thus, we can 
focus on one error term at the time when examining the underpinnings of Assumption 3.   
 
In the CLRM, by Assumption 4, this error term follows a distribution with mean zero and variance 2σ , 
and all error terms, iε , i=1…n, follow the exact same distribution.  Thus we can think of all error terms 
as realizations from the same distribution.  However, we will later encounter models where each iε has its 
own distribution (i.e. a violation of Assumption 4), but Assumption 3 may still hold.  Thus, for this 
discussion of Assumption 3, we will make no further assumption regarding the exact distribution of iε , 
and how it relates to the distribution of ,j j iε ≠ , other than invoking independence.  In other words, it's 

OK to think of each iε as following its own distribution. 
 
Now consider some explanatory variable kx (example: "SAT score").  Generally, we consider each 
explanatory variable as a true random variable in the statistical sense, following some underlying 
distribution, potentially jointly with other regressors.  Individual i's realization of this variable is ikx .  The 
set of realizations of kx for the sample at hand is vector kx .  For cross-sectional regression, where each 
observation corresponds to a different individual (or "cross-sectional unit") it makes sense to think of 
each , 1ikx i n=   in kx as realization from the population distribution ( )kf x .  This distribution is shared 
by all individuals in the sample.  In time series analysis this is not as clear-cut, since tkx (example: water 
use in month t) could feasibly follow a different distribution than  ( )1t kx −  (water use in month t-1).  Thus, 

as with the error term, we can assume without loss of generality that each , 1 , 1ikx i n k K= =  follows 
its own (unspecified) distribution within the context of this discussion. 
 
So let's first focus on a single draw of the error term, iε , and a single draw of some regressor for person i, 

ikx .  For simplicity, let's also assume that there are no other explanatory variables in the model (so we 
don't have to worry about potential correlation of ikx with ,ilx l k≠ ).  This means we can drop the "k" 
subscript for now. 
 
To talk about conditional expectations in a meaningful way, we must assume that iε and ix (potentially) 
follow a joint distribution, say ( ),i if xε .  This joint density can always be written as a product of a 
marginal and a conditional density, i.e. 
 
( ) ( ) ( ) ( ) ( ), | |i i i i i i i if x f x f x f x fε ε ε ε= =   (11) 
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The marginal density, marginal (unconditional) expectation, and conditional expectation of  iε are given 
as follows: 
 
( ) ( )

( ) ( )

( ) ( )

,

| |

i

i

i

i i i i
x

i i i i

i i i i i i

f f x dx

E f d

E x f x d

ε

ε

ε ε

ε ε ε ε

ε ε ε ε

=

=

=

∫

∫

∫

  (12) 

 
We can now derive an important relationship, called the "Law of Iterated Expectations" (see Greene p. 16 
and p. 1007): 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

, |

| |

i i i i i

i i

i i

i i i i i i i i i i i i i i i
x x
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=  
 

∫ ∫ ∫ ∫ ∫

∫ ∫
 (13) 

 
This says that the unconditional expectation of iε  can be interpreted as the expectation, over ix , of the 
conditional expectation of |i ixε .   
 
Now back to Assumption 3: It implies that ( )| 0

i i iE xε ε = .  By (13), this automatically implies that the 

unconditional expectation is zero as well, since ( )( ) ( )| 0 0
i i ix i i xE E x Eε ε = = . 

 
Assumption 3 is often interpreted as " iε  and ix are uncorrelated", i.e. have a covariance of zero. Let's 
check if this is correct, i.e. if ( ) ( )| 0 cov , 0

i i i i iE x xε ε ε= ⇒ = : 
 

( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )( )
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| | |
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i i i i i

i

i i x i i i i

x i i i i i i i i

x i i x i i x i i i i

x i i i x i i i x i i i i i

x i i i x i i x i i i i i

x

x E E x E x

E x E x E x E E x

E x E E x E E x E E x

E E x x E E E x x E E E x x E E x

E x E x E E x E E x E x E E x

E

ε

ε

ε ε ε

ε ε ε

ε ε

ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

= − − =

− − + =

− − + =

− − + =

− − + =

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )( )

| |
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ε ε

ε ε ε

ε ε ε ε

ε ε

ε ε ε

− − + =

− =
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Naturally, if ( )| 0
i i iE xε ε =  the last line in (14) will always equal zero, so indeed we have 

( ) ( )| 0 cov , 0
i i i i iE x xε ε ε= ⇒ = .   Note that the last line also corresponds to Greene's Theorem B.2 on p. 

1007. 
 
Is the reverse true, i.e. does ( ) ( )cov , 0 | 0

ii i i ix E xεε ε= ⇒ = hold?  It will as long as ( )i ix E x i≠ ∀ , else 
we have  
 

( ) ( ) ( ) ( )( )( ) ( )( )cov , | | *0 0
i i i ii i x i i i i x i ix E E x E x E x E E xε εε ε ε= − = =  (15) 

 
regardless of the value of ( )|

i i iE xε ε . Naturally, this can only hold for the constant term in a given 
regression model. 
 
From Assumption 3 it also follows that  
 
( ) ( ) ( ) ( ) ( )| | | 0i i i i i i i i i iE y x E x x E x E x E x xβ ε β ε β β= + = + = + =  (16) 

 
i.e. we have indeed a true regression – relationship.  For this reason Assumption 3 is often referred to as 
the "regression" assumption. 
 
Now let's go a step further and assume that there are two explanatory variables in the model , ikx and ilx , 
and that these two regressors are potentially correlated with each other and with the error term.  (For 
example, ilx could be "first year GPA" ikx  could be "SAT score", and both could, in theory,  be correlated 
with the unobserved variable "ability", or "spunk").  Thus, we are now considering the tri-variate density 
( ), ,i ik ilf x xε .  This does not pose any additional complications. 

 
Assumption 3 simply requires that ( ) ( )| , | , 0

i

i ik il i i ik il iE x x f x x d
ε

ε ε ε ε= =∫  

As before, this implies ( ) 0iE ε =  since 
 
( ) ( )( ) ( ), ,| , 0 0

ik il i ik ili x x i ik il x xE E E x x Eεε ε= = =   (17) 
 
By analogy to our derivation above, the covariance between iε  and each of the two regressors must be 
zero as well.  
 
Pushing this one last step further, we now extend Assumption 3 also to observations on regressors for 
other individuals in the sample.  Consider a second individual, j, for whom we observe realizations for the 
same two regressors,  jkx and jlx .  This simply extends the exposition to a five-variate joint density, i.e. 

( ), , , ,i ik il jk jlf x x x xε , and Assumption 3 requires that 

( ) ( )| , , , | , , , 0
i

i ik il jk jl i i ik il jk jl iE x x x x f x x x x d
ε

ε ε ε ε= =∫  

 
All other results follow by analogy.  Thus, we can compactly express Assumption 3 for any generic 
CLRM as shown in (9). 
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R script mod1_2c  illustrates the implications of Assumption 3. 
 
Assumption 4 
 
Homoskedasticity (= equal variance) of error terms: 
 
( ) 2 1iV i nε σ= ∀ =    (18) 

 
So we assume all n error terms are "drawn" from the same distribution with mean 0 and variance 2σ . 
 
Error terms are uncorrelated ("non-autocorrelated"): 
 

( ) ( )( ) ( )( )( ) ( ), 0,i j i i j j i jCov E E E E i jε ε ε ε ε ε ε ε= − ⋅ − = ⋅ = ∀ ≠  (19) 

 
Violations of these assumptions is called "heteroskedasticity" and "autocorrelation", respectively. We'll 
address these issues later in this course. 
 
For the full model, Assumption 4 can be written as 
 

( ) ( )

2
1 1 1 2 1

2
2 1 2 2 2 2

2
1 2

0 0

0 0

0 0

n

n

n n n n

V E E

σε ε ε ε ε ε
ε ε ε ε ε ε σ

σ

ε ε ε ε ε ε σ

  
  
  ′= = = =  
  
    

ε εε I








   

   





 (20) 

 
Disturbances that satisfy this property are called "spherical". 
 
For the dependent variable, this implies: 
 
( ) ( ) ( ) ( ) ( ) ( ) 2| 2 ,V V V V Cov V σ= + = + + = =y X Xβ ε Xβ ε Xβ ε ε I  (21) 

Assumption 5 
The error terms follow a normal distribution, i.e. 
 

( ) ( )2 2~ 0, or ~ ,i n i nε σ σ∀ ε 0 I   (22) 
 
For the dependent variable, this implies: 
 

( )2~ ,n σy Xβ I   (23) 
 
This normality assumption is not necessary to derive parameter estimates for β , but it is needed to derive 
some exact statistical results for estimators, and to construct certain test statistics. 
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The statistical properties of X 
 
In some applications, the elements of the observed data X can be viewed as fixed (e.g. in experimental 
settings where all "data" are perfectly controlled), but in most cases X itself will follow some distribution 
in the underlying population.  If so, we view the entire analysis as "conditional on X", which means we 
essentially "freeze" X at the observed values.  We understand that a different X might produce different 
results, but we hope that these differences would vanish with (hypothetical) collection of more and more 
data.   
 
What's important is Assumption 3:  Whichever mechanism generates X is unrelated to the mechanism that 
generates the error terms. 

Estimation 
 
The population model at the observation level is given by (4).  We seek an estimator for βwith desirable 
statistical properties.  We will denote this estimator generically as b, and the resulting estimate for E[yi|xi] 
as ˆiy , i.e. 
 
[ ]ˆ ˆ|i iE y y ′= =i ix x b   (24) 

 
The term ˆiy is often called "fitted value". The difference between actually observed yi and estimated (or 
"predicted") ˆiy is called "residual" ei, i.e. 
 

ˆi i i ie y y y ′= − = − ix b   (25) 
 
In passing, we note that this implies the following equality 
 

andi ieε′ ′+ = + + = +i ix β x b Xβ ε Xb e .  (26) 
 
To find b, a natural strategy might be to get ˆiy as close to yi as possible for all observations.  By (25) this 
implies "making the residuals as small as possible".  A more popular criterion is to minimize the sum of 
squared residuals, which penalizes larger residuals relatively more.  
 
See slide 2 of the PowerPoint slides "OLSregression" on our course web page, and also Greene Fig. 3.1 
(p. 22).  Denoting a candidate for b as b0, our optimization goal is thus given as 
 

( ) ( )min

2

′′ ′ ′ ′ ′ ′ ′= − − = − − + =

′ ′ ′ ′− +
0

0 0 0 0 0 0b

0 0 0

e e y Xb y Xb y y b X y y Xb b X Xb

y y y Xb b X Xb
 (27) 

 
We solve for b by deriving the First Order Conditions (FOC), using "matrix calculus" (see Matrix 
Algebra notes)  
 

2 2

2 2

′∂ ′ ′= − +
∂

′ ′− + =

0
0

e e X y X Xb
b
X y X Xb 0

  (28) 
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The second line is often referred to as the Least Squares "Normal Equation". If X is full rank, X'X will 
be symmetric and full rank as well, thus its inverse will exist, and we can solve (28) for b0 to obtain 
 

( ) 1−′ ′=b X X X y   (29) 
As shown in Greene p. 21, this solution is indeed a minimum and unique, since the second derivative 
yields a positive definite matrix.  The solution is called the Ordinary Least Squares (OLS) estimator. 
 
See script mod1_2b  for an example of OLS using wage data. 

Orthogonality and Projection 
 
In Euclidean space, "orthogonaliy" between vectors a and b (some b, not our OLS estimator) arises if two 
vectors form a right angle.  Mathematically, this implies that their inner product is zero, i.e. a'b = 0.  
Orthogonality is also possible between a matrix X and a conformable vector a.  In that case, it implies that 
every column of X is orthogonal to a, and that X'a = 0.  
 
In contrast, population orthogonality between two variables implies that the two variables are perfectly 
uncorrelated for the entire population, in the sense that the expectation of their inner product is zero 
(essentially our Assumption 3 for the CLRM for any regressor x and the error term).  However, for any 
finite set of draws for these variables (i.e. for a given sample), orthogonality in the Euclidean sense is 
unlikely to hold (though we would expect the inner product to be relatively close to zero). 
 
Perfect (Euclidean) orthogonality between explanatory variables is generally a very desirable property in 
regression analysis.  In reality, it hardly ever occurs (the best we can hope for is "low correlation"), but in 
experimental settings researches can 'design" orthogonal explanatory variables.  We will visit the topic of 
"orthogonality" many times in this course. 
 
For the OLS model, we have orthogonality between data matrix X and the residuals by construction. 
Starting with the normal equation, we have: 
 

( )0′ ′ ′ ′− = ⇒ − − = − =X Xb X y X y Xb X e 0   (30) 
Intuitively, this makes a lot of sense - the residuals should only contain what X couldn't explain about y.  
 
If the first column of X is a vector of "1's" (i.e. we are estimating a regression model with a constant term 
- the standard case, we gain a few more interesting insights from the normal equation and relationships 
that flow from it: 
 
(i) The residuals sum to zero: 
 

[ ]

′ 
 ′′  ′ = = =
 
 ′ 

2
2 k

k

i e
c e

X e i c c e 0

c e





  (31) 

 
(ii) The regression hyperplane passes through the data means: 
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[ ]

[ ] 1
1 1 1

1 1
1 1 1 1 1

1st equation:

1 where 1

n n n

i ik i
i i i

n n n n n

i ik i i ik
i i i i i

n c c y

c n c n y n y c n c n

= = =

= = = = =

′ ′   
   ′ ′   ′ ′= ⇔ =
   
   ′ ′   

 
′ ′= ⇔ = 

 
′   

⇒ = ⇒ = =   
   

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

2 2
1 k

k k

1 k

i i
c c

X Xb X y i c c b y

c c

i i c c b i y b

b x'b x



 

 

 

(32) 

Next, let's derive two important matrices in regression analysis: 
 

( )
( )

( ) ( ) and

ˆ - ( )

′ ′= − = − = − =

′= = − = − = =

-1 -1

-1

e y Xb y X X'X X y I X X'X X y My

y y e y My I M y X X'X X y Py
 (33) 

 
In regression jargon, M is known as the "residual maker" and P is the "projection matrix".  Note that both 
matrices are a function of X.  So with each new X, we get a new M and P.  Also, both matrices are 
symmetric and idempotent ( means M*M = M).   
 
Intuitively, just remember that M turns y into "everything X couldn't explain", i.e. the residuals, and P 
turn y into "everything X can explain", i.e. the fitted values.  Some useful relationships that follow: 
 

ˆ ˆ

=
= =
=

= +
′ ′=
′ ′ ′= +

MX 0
PM MP 0
PX X
y Py My
e e e y
y y y y e e

  (34) 

 

Partitioned Regression and Partial Regression 

R script mod1_2d 

Question: What computations are involved in obtaining, in isolation, a subset of the coefficients of a 
multiple regression model (while still controlling for all other effects)?  In the early days of regression 
analysis, the resulting strategy of "partitioned regression" was an important "shortcut" to reduce 
computation time.  Today, we show this primarily to gain further insights into the mechanics of OLS. 

First, assume we have data matrix X and corresponding coefficient vector β , but we are primarily 
interested in the effects of a subset of variables (columns) of X.  Denote this subset as X2 and the 
remaining variables as X1.  Conformably, also split the coefficient vector into 2 parts 2β  and 1β .  We can 
then write the CLRM as: 
= + = + +1 1 2 2y Xβ ε X β X β ε   (35) 
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Our objective is to find the OLS solution for b2.  The normal equations can now be written as 
′ ′ ′     

=     ′ ′ ′     
1 1 1 2 1 1

2 1 2 2 2 2

X X X X b X y
X X X X b X y

  (36) 

First, use the first set of equations to solve for b1 in terms of X1, X2, y, and b2: 

( ) ( )1−′ ′ ′ ′ ′+ = ⇔ = −1 1 1 1 2 2 1 1 1 1 1 2 2X X b X X b X y b X X X y X b  (37) 

Note that if all columns of X1 are orthogonal to all columns of X2 (a rare occurrence to say the least...), 
X'1X2 = 0, and we have the usual OLS normal equations, and ( ) 1−′ ′=1 1 1 1b X X X y .  This implies that we 
could then estimate b1 simply by regressing y on X1.  Intuitively, this further implies that there is no 
correlation between X1 and X2, so we don't have to "control" for the effects of X2 when estimating the 
effects of X1 on y. (Note: However, we would still lose efficiency and explanatory power for our model if 
X2 has something to say about y). 

Combining (37) with the second set of normal equations from (36) yields the solution for b2:  

( ) ( )
( ) ( ) ( )( ) ( )

( )
( )

1

1

1

where

−

−

−

′ ′ ′+ = ⇒

′ ′ ′ ′ ′− + = ⇒

′ ′=

′ ′= −

2 1 1 2 2 2 2

2 1 1 1 1 2 2 2 2 2 2

2 2 1 2 2 1

1 1 1 1 1

X X b X X b X y

X X X X X y X b X X b X y

b X M X X M y

M I X X X X

 (38) 

M1 is the residual maker matrix in a regression of anything on X1.  Note again that this reduces to the 
standard OLS formula if X'1X2 = 0. We can alternatively write the partitioned regression as 

( ) 1
where

,

−
′ ′=

= =

* * * *
2 2 2 2

* *
2 1 2 1

b X X X y

X M X y M y
  (39) 

Thus, we can think of this as a two-step process: In step 1 we regress all columns of X2 on X1 and collect 
the residuals (i.e. get M1X2). These residuals will then contain what's left of the information in X2 after 
netting out the effect of X1.  We do the same for y by regressing it on X1 and collecting residuals.  In step 
2 we then regress the purged-of-X1-effects version of y on the purged-of-X1-effects version of X2 to get 
the pure effect of X2 on y, i.e. b2.  This is the famous "Frisch-Waugh Theorem" (Greene p. 28). 
 
The process can easily extended to derive the partitioned result for an individual coefficient.  In that case, 
just think of X2 as a single column (say "z"), and of b2 as a scalar, say "c".  We then get 
 

( ) 1
where ,c

−
′ ′= = =* * * * * *

1 1z z z y z M z y M y  (40) 

 
If you consider z to be a new variable to be added to X, you get the result in Corollary 3.2.1, p. 34. 
 
R script mod1_2d illustrates the Partitioned Regression approach.  Note that the estimated standard 
deviation for the error term, and thus the standard errors and t-values for the partitioned regression results 
are a bit different from those obtained in the full model.  This difference lies solely in the (n-k) correction 
in the denominator for the s2-formula, since "k" differs between the full and partitioned model.  Naturally, 
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this difference diminishes under increasing sample size, as n will vastly outweigh k in either case.  (You 
can verify this by dropping the "minus k" correction in the s2 formula for both models – the s.e.'s and t-
values will now be identical) 

Goodness of Fit and Analysis of Variance (ANOVA) 
 
A special case of the residual-maker matrix M1 is the (n by n) deviation-from-the-mean matrix M0: 
 

( ) 1' − ′= −0M I i i i i   (41) 
 
where I is the n by n identity matrix and i is an n by 1 vector of ones.  Intuitively, this matrix "regresses" 
any vector, say x, or matrix, say X, against a column of ones and captures the resulting residuals. These 
residuals will simply be the deviation of each observation in x or X from its respective column mean.  
Example: 
 

[ ] [ ]

1 1

2 2

n n

x x x
x x x

x

x x x

−   
   −   = = = −
   
   

−   
= = − − −

0

1 2 k 0 1 1 2 2 k k

x M x x i

X c c c M X c ic c ic c ic

 

 

 (42) 

 
We can now compactly write our CLRM in "deviation from the mean" form as 
 

= + = +0 0 0 0M y M Xb M e M Xb e   (43) 
 
The second equality follows from the fact that the mean of the residual vector is zero, i.e. =0M e e (IFF 
the model includes an intercept). 
 
Noting that it then follows that ′= =0e'M X e X 0 , we can derive the sum of squared differences of the 
elements of y from their mean, known as "Total Sum of Squares" (SST) as 
 

( ) ( )
ˆ ˆ

′ ′ ′ ′ ′ ′ ′ ′= = + + + =

′ ′ ′ ′ ′+ = +
0 0 0 0 0 0 0

0 0

M y M y y M y b X M Xb e M Xb b X M e e M e
b X M Xb e e y M y e e

 (44) 

 
If the regression includes an intercept (= constant term), we have ŷ y=  and  ˆ ˆ ˆy y− = −y i y i , and we can 
interpret (44) as Total Sum of Squares = Regression Sum of Squares + Error Sum of Squares, or SST = 
SSR + SSE.  Note: The last term is also known as "sum of squared residuals", but since the resulting 
acronym would also be SSR, we'll stick with Greene's terminology of "Error Sum of Squares". 
 
Intuition: Recall that the fundamental aim of regression analysis is to explain observed variation in y via 
observed variation in X. Equation (44) says that we can break down the variation in y into two 
components: A part that's explained by the variation of X (SSR), and a part that our regression cannot 
explain (SSE).  It is thus natural to use the ratio of SSR / SST as Goodness-of-Fit measure for our 
regression model.  This is the "Coefficient of Determination", better known as "R2".   
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2 / 1R SSR SST
′ ′ ′

= = = −
′ ′

0

0 0

b X M Xb e e
y M y y M y

  (45) 

 
This statistic lies between 0 and 1.  A value of "0" implies that X has nothing to say about y.  In a 2-
dimensional model, this would be a flat regression line through the mean of y. A value of 1 implies a 
"perfect fit" - y actually lies in the hyperplane described by the columns of X.   
 
As discussed in more detail in Greene, Ch. 3, a problem with this fit measure is that it never declines as 
more explanatory variables, even meaningless ones, are added to the model. In other words, the 
conventional R2 measure doesn't penalize for superfluous regressors, or, alternatively, doesn't reward for 
parsimony.  We therefore prefer the "Adjusted R2" given as 
 

( )
( )

( )
( )

2 / 1
1 1

/ 1
n k n

R
n n k

′ ′− ⋅ −
= − = −

′ ′− ⋅ −0 0

e e e e
y M y y M y

  (46) 

 
Thus, as the number of regressors (including intercept) k increases relative to sample size n, the last term 
increases, and the adjusted fit deteriorates. The ordinary and adjusted R2 are related as follows: 
 

( )2 211 1nR R
n k
− = − − − 

  (47) 

 
Note that the preceding derivations break down when the regression model does not include a constant 
term. For models without constant term, the interpretation of R2 becomes ambiguous, and this measure 
should not be used.   
 
Instead, you may want to consider the following alternative goodness-of-fit measures, the Akaike 
Information Criterion (AIC) and the Schwartz or Bayesian Information Criterion (BIC).  Both work for 
models without constant term and, for that matter, also for nonlinear regression models.  They also reward 
parsimony.  They are usually given in log-form as follows: 
 

( )log2log log log log
K nKAIC BIC

n n n n
′ ′   = + = +   

   

e e e e  (48) 

 
(see Greene ch. 5 for more details).  Note that both statistics DECLINE as model fit improves. (So a 
smaller number implies a better fit). 
 
Some software packages produce a summary of squared deviations in a table accompanying the main 
regression results. This table is often referred to as "Analysis of Variance" (ANOVA) Table.  In STATA 
for example, "Model" SS means SSR, "Residual" SS means SSE, and "Total" SS means SST.   
 
See script mod1_2d for basic goodness-of-fit derivations. 
 
Finally, if you wish to use 2R to choose between two models, the following must hold: 
 
1. The vector of dependent observations must be identical for both models. (So you can't compare a 

model that is linear in y to one that uses, say, log y. Also, sample sizes must be identical) 
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2. The models have to be linear-in-parameters.  For nonlinear regression models use AIC, BIC or related 
measures. 
 

3. Both models must have a constant term, and the mean of the error term in the population model must 
be zero. 
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